A286097 Number of partitions of n such that each part is no more than 4 more than the sum of all smaller parts.
1, 1, 2, 3, 5, 6, 10, 13, 20, 26, 37, 48, 68, 86, 119, 152, 204, 258, 342, 428, 560, 698, 897, 1114, 1421, 1748, 2210, 2712, 3390, 4140, 5140, 6240, 7702, 9314, 11402, 13741, 16742, 20071, 24333, 29087, 35056, 41770, 50137, 59503, 71148, 84195, 100213, 118275, 140307, 165041, 195139
Offset: 0
Keywords
Examples
For n = 8, a(8) = 20 counts all partitions of 8 except (8) and (7,1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A126796.
Programs
-
Mathematica
Table[Count[IntegerPartitions@n, w_ /; And[Last@w <= 4, NoneTrue[ w - Rest@ PadRight[4 + Reverse@Accumulate@Reverse@w, Length@w + 1, Last@w], # > 0 &]]], {n, 50}] (* George Beck, May 17 2017, Version 11.1.1, adapted from A286929 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). - Vaclav Kotesovec, May 24 2018
Comments