cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286146 Lower triangular region of square array A286101.

This page as a plain text file.
%I A286146 #18 Mar 21 2025 18:28:06
%S A286146 1,2,5,4,16,13,7,12,67,25,11,46,106,191,41,16,23,31,80,436,61,22,92,
%T A286146 211,379,596,862,85,29,38,277,59,781,302,1541,113,37,154,58,631,991,
%U A286146 193,1954,2557,145,46,57,436,212,96,467,2416,822,4006,181,56,232,529,947,1486,2146,2927,3829,4852,5996,221,67,80,94,109,1771,142,3487,355,706,1832,8647
%N A286146 Lower triangular region of square array A286101.
%H A286146 Antti Karttunen, <a href="/A286146/b286146.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of triangle</a>
%F A286146 As a triangle (with n >= 1, 1 <= k <= n):
%F A286146 T(n,k) = (1/2)*(2 + ((gcd(n,k)+lcm(n,k))^2) - gcd(n,k) - 3*lcm(n,k)).
%e A286146 The first twelve rows of the triangle:
%e A286146    1,
%e A286146    2,   5,
%e A286146    4,  16,  13,
%e A286146    7,  12,  67,  25,
%e A286146   11,  46, 106, 191,   41,
%e A286146   16,  23,  31,  80,  436,   61,
%e A286146   22,  92, 211, 379,  596,  862,   85,
%e A286146   29,  38, 277,  59,  781,  302, 1541,  113,
%e A286146   37, 154,  58, 631,  991,  193, 1954, 2557,  145,
%e A286146   46,  57, 436, 212,   96,  467, 2416,  822, 4006,  181,
%e A286146   56, 232, 529, 947, 1486, 2146, 2927, 3829, 4852, 5996,  221,
%e A286146   67,  80,  94, 109, 1771,  142, 3487,  355,  706, 1832, 8647, 265
%e A286146   ----------------------------------------------------------------
%e A286146 For T(4,3) we have gcd(4,3) = 1 and lcm(4,3) = 12, thus T(4,3) = (1/2)*(2 + (12+1)^2 - 1 - 3*12) = 67.
%e A286146 For T(6,4) we have gcd(6,4) = 2 and lcm(6,4) = 12, thus T(6,4) = (1/2)*(2 + (12+2)^2 - 2 - 3*12) = 80.
%e A286146 For T(12,1) we have gcd(12,1) = 1 and lcm(12,1) = 12, thus T(12,1) = T(4,3) = 67.
%e A286146 For T(12,2) we have gcd(12,2) = 2 and lcm(12,1) = 12, thus T(12,1) = T(6,4) = 80.
%e A286146 For T(12,8) we have gcd(12,8) = 4 and lcm(12,8) = 24, thus T(12,8) = (1/2)*(2 + (24+4)^2 - 4 - 3*24) = 355.
%o A286146 (Scheme) (define (A286146 n) (A286101bi (A002024 n) (A002260 n))) ;; For A286101bi see A286101.
%o A286146 (Python)
%o A286146 from sympy import lcm, gcd
%o A286146 def t(n, k): return (2 + ((gcd(n, k) + lcm(n, k))**2) - gcd(n, k) - 3*lcm(n, k))/2
%o A286146 for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 11 2017
%Y A286146 Cf. A286101.
%Y A286146 Cf. A286148 (same triangle reversed).
%Y A286146 Cf. A000124 (the left edge), A001844 (the right edge).
%K A286146 nonn,tabl
%O A286146 1,2
%A A286146 _Antti Karttunen_, May 06 2017