cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286151 Square array read by descending antidiagonals: If n > k, A(n,k) = T(n XOR k, k), and otherwise A(n,k) = T(n, n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).

This page as a plain text file.
%I A286151 #24 Feb 16 2025 08:33:44
%S A286151 0,1,2,3,2,5,6,11,13,9,10,7,5,8,14,15,22,8,7,26,20,21,16,38,9,42,19,
%T A286151 27,28,37,47,58,62,52,43,35,36,29,23,48,14,51,25,34,44,45,56,30,39,19,
%U A286151 16,41,33,64,54,55,46,80,31,25,20,23,32,88,53,65,66,79,93,108,32,41,39,31,116,102,89,77,78,67,57,94,140,33,27,30,148,101,63,76,90
%N A286151 Square array read by descending antidiagonals: If n > k, A(n,k) = T(n XOR k, k), and otherwise A(n,k) = T(n, n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).
%C A286151 The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
%H A286151 Antti Karttunen, <a href="/A286151/b286151.txt">Table of n, a(n) for n = 0..10584; the first 145 antidiagonals of array</a>
%H A286151 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a>
%F A286151 If n > k, A(n,k) = T(A003987(n,k),k), otherwise A(n,k) = T(n,A003987(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, and XOR is bitwise-xor (A003987).
%e A286151 The top left 0 .. 12 x 0 .. 12 corner of the array:
%e A286151    0,   1,   3,   6,  10,  15,  21,  28,  36,  45,  55,  66,  78
%e A286151    2,   2,  11,   7,  22,  16,  37,  29,  56,  46,  79,  67, 106
%e A286151    5,  13,   5,   8,  38,  47,  23,  30,  80,  93,  57,  68, 138
%e A286151    9,   8,   7,   9,  58,  48,  39,  31, 108,  94,  81,  69, 174
%e A286151   14,  26,  42,  62,  14,  19,  25,  32, 140, 157, 175, 194,  82
%e A286151   20,  19,  52,  51,  16,  20,  41,  33, 176, 158, 215, 195, 110
%e A286151   27,  43,  25,  41,  23,  39,  27,  34, 216, 237, 177, 196, 142
%e A286151   35,  34,  33,  32,  31,  30,  29,  35, 260, 238, 217, 197, 178
%e A286151   44,  64,  88, 116, 148, 184, 224, 268,  44,  53,  63,  74,  86
%e A286151   54,  53, 102, 101, 166, 165, 246, 245,  46,  54,  87,  75, 114
%e A286151   65,  89,  63,  87, 185, 225, 183, 223,  57,  81,  65,  76, 146
%e A286151   77,  76,  75,  74, 205, 204, 203, 202,  69,  68,  67,  77, 182
%e A286151   90, 118, 150, 186,  86, 114, 146, 182,  82, 110, 142, 178,  90
%t A286151 T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=If[n>k, T[BitXor[n, k], k], T[n, BitXor[n, k]]]; Table[A[k, n - k ], {n, 0, 20}, {k, 0, n}] // Flatten (* _Indranil Ghosh_, May 20 2017 *)
%o A286151 (Scheme)
%o A286151 (define (A286151 n) (A286151bi (A002262 n) (A025581 n)))
%o A286151 (define (A286151bi row col) (define (pairA001477bi a b) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2)) (cond ((> row col) (pairA001477bi (A003987bi row col) col)) (else (pairA001477bi row (A003987bi col row))))) ;; Where A003987bi implements bitwise-xor (A003987).
%o A286151 (Python)
%o A286151 def T(a, b): return ((a + b)**2 + 3*a + b)//2
%o A286151 def A(n, k): return T(n^k, k) if n>k else T(n, n^k)
%o A286151 for n in range(21): print([A(k, n - k) for k in range(n + 1)]) # _Indranil Ghosh_, May 20 2017
%Y A286151 Cf. A000217 (row 0), A000096 (column 0 and the main diagonal).
%Y A286151 Cf. A001477, A003987, A286108, A286109, A286145, A286147, A286150.
%Y A286151 Cf. A286153 (same array without row 0 and column 0).
%K A286151 nonn,tabl
%O A286151 0,3
%A A286151 _Antti Karttunen_, May 03 2017