This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286218 #14 Feb 16 2025 08:33:44 %S A286218 1,0,1,1,1,2,2,3,4,4,6,7,9,11,13,16,19,23,28,33,40,46,55,65,76,89,104, %T A286218 121,141,163,190,219,253,290,334,383,439,502,573,653,744,845,961,1089, %U A286218 1234,1395,1576,1780,2007,2259,2544,2856,3209,3598,4033,4516,5051,5644,6304,7033,7843 %N A286218 Number of partitions of n into parts with an odd number of prime divisors (counted with multiplicity). %H A286218 Alois P. Heinz, <a href="/A286218/b286218.txt">Table of n, a(n) for n = 0..10000</a> %H A286218 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a> %H A286218 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A286218 G.f.: Product_{k>=1} 1/(1 - x^A026424(k)). %e A286218 a(8) = 4 because we have [8], [5, 3], [3, 3, 2] and [2, 2, 2, 2]. %p A286218 with(numtheory): %p A286218 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( %p A286218 `if`(bigomega(d)::odd, d, 0), d=divisors(j)), j=1..n)/n) %p A286218 end: %p A286218 seq(a(n), n=0..80); # _Alois P. Heinz_, May 04 2017 %t A286218 nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[OddQ[PrimeOmega[k]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A286218 Cf. A001156, A026424, A285799, A286219. %K A286218 nonn %O A286218 0,6 %A A286218 _Ilya Gutkovskiy_, May 04 2017