cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286223 Number of partitions of n into distinct parts with an even number of prime divisors (counted with multiplicity).

This page as a plain text file.
%I A286223 #9 Feb 16 2025 08:33:44
%S A286223 1,1,0,0,1,1,1,1,0,1,3,2,0,1,3,4,4,2,1,4,6,5,4,4,6,10,10,6,6,10,13,14,
%T A286223 11,9,14,21,21,17,17,23,31,31,25,25,33,41,43,39,38,50,61,60,56,58,68,
%U A286223 83,87,79,82,99,115,121,118,118,139,163,164,157,165,189,216,228,221,229,265,296
%N A286223 Number of partitions of n into distinct parts with an even number of prime divisors (counted with multiplicity).
%H A286223 Amiram Eldar, <a href="/A286223/b286223.txt">Table of n, a(n) for n = 0..10000</a>
%H A286223 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>
%H A286223 <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F A286223 G.f.: Product_{k>=1} (1 + x^A028260(k)).
%e A286223 a(10) = 3 because we have [10], [9, 1] and [6, 4].
%t A286223 nmax = 75; CoefficientList[Series[Product[1 + Boole[EvenQ[PrimeOmega[k]]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A286223 Cf. A028260, A286219, A286221, A286222.
%K A286223 nonn
%O A286223 0,11
%A A286223 _Ilya Gutkovskiy_, May 04 2017