This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286234 #35 Jun 12 2025 10:17:01 %S A286234 1,1,2,3,1,4,3,3,2,7,10,3,3,2,11,3,10,3,5,4,16,21,3,10,3,5,4,22,10,21, %T A286234 3,10,5,5,7,29,21,10,21,3,10,5,8,7,37,10,21,10,21,3,14,5,8,11,46,55, %U A286234 10,21,10,21,3,14,5,8,11,56,10,55,10,21,10,21,5,14,8,12,16,67,78,10,55,10,21,10,21,5,14,8,12,16,79,21,78,10,55,10,21,10,27,5,14,8,12,22,92 %N A286234 Square array A(n,k) = P(A000010(k), floor((n+k-1)/k)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N. %C A286234 Transpose of A286235. %H A286234 Antti Karttunen, <a href="/A286234/b286234.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of array</a> %H A286234 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %e A286234 The top left 12 X 12 corner of the array: %e A286234 1, 1, 3, 3, 10, 3, 21, 10, 21, 10, 55, 10 %e A286234 2, 1, 3, 3, 10, 3, 21, 10, 21, 10, 55, 10 %e A286234 4, 2, 3, 3, 10, 3, 21, 10, 21, 10, 55, 10 %e A286234 7, 2, 5, 3, 10, 3, 21, 10, 21, 10, 55, 10 %e A286234 11, 4, 5, 5, 10, 3, 21, 10, 21, 10, 55, 10 %e A286234 16, 4, 5, 5, 14, 3, 21, 10, 21, 10, 55, 10 %e A286234 22, 7, 8, 5, 14, 5, 21, 10, 21, 10, 55, 10 %e A286234 29, 7, 8, 5, 14, 5, 27, 10, 21, 10, 55, 10 %e A286234 37, 11, 8, 8, 14, 5, 27, 14, 21, 10, 55, 10 %e A286234 46, 11, 12, 8, 14, 5, 27, 14, 27, 10, 55, 10 %e A286234 56, 16, 12, 8, 19, 5, 27, 14, 27, 14, 55, 10 %e A286234 67, 16, 12, 8, 19, 5, 27, 14, 27, 14, 65, 10 %e A286234 The first fifteen rows when viewed as a triangle: %e A286234 1 %e A286234 1 2 %e A286234 3 1 4 %e A286234 3 3 2 7 %e A286234 10 3 3 2 11 %e A286234 3 10 3 5 4 16 %e A286234 21 3 10 3 5 4 22 %e A286234 10 21 3 10 5 5 7 29 %e A286234 21 10 21 3 10 5 8 7 37 %e A286234 10 21 10 21 3 14 5 8 11 46 %e A286234 55 10 21 10 21 3 14 5 8 11 56 %e A286234 10 55 10 21 10 21 5 14 8 12 16 67 %e A286234 78 10 55 10 21 10 21 5 14 8 12 16 79 %e A286234 21 78 10 55 10 21 10 27 5 14 8 12 22 92 %e A286234 36 21 78 10 55 10 21 10 27 5 19 8 17 22 106 %t A286234 Map[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ # & /@ Reverse@ # &, Table[{EulerPhi@ k, Floor[n/k]}, {n, 14}, {k, n}]] // Flatten (* _Michael De Vlieger_, May 06 2017 *) %o A286234 (Scheme) %o A286234 (define (A286234 n) (A286234bi (A002260 n) (A004736 n))) %o A286234 (define (A286234bi row col) (let ((a (A000010 col)) (b (quotient (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))) %o A286234 (Python) %o A286234 from sympy import totient %o A286234 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A286234 def t(n, k): return T(totient(k), n//k) %o A286234 for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # _Indranil Ghosh_, May 11 2017 %Y A286234 Transpose: A286235. %Y A286234 Cf. A000010, A000027, A286156, A286236, A286244. %K A286234 nonn,tabl %O A286234 1,3 %A A286234 _Antti Karttunen_, May 05 2017