This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286236 #29 Jun 12 2025 10:17:05 %S A286236 1,1,2,3,0,4,3,0,2,7,10,0,0,0,11,3,0,0,5,4,16,21,0,0,0,0,0,22,10,0,0, %T A286236 0,5,0,7,29,21,0,0,0,0,0,8,0,37,10,0,0,0,0,14,0,0,11,46,55,0,0,0,0,0, %U A286236 0,0,0,0,56,10,0,0,0,0,0,5,0,8,12,16,67,78,0,0,0,0,0,0,0,0,0,0,0,79,21,0,0,0,0,0,0,27,0,0,0,0,22,92,36,0,0,0,0,0,0,0,0,0,19,0,17,0,106 %N A286236 Square array A(n,k) = P(A000010(k), (n+k-1)/k) if k divides (n+k-1), 0 otherwise, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N. %C A286236 This is transpose of A286237, see comments there. %H A286236 Antti Karttunen, <a href="/A286236/b286236.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array</a> %F A286236 T(n,k) = A113998(n,k) * A286234(n,k). %e A286236 The top left 12 X 12 corner of the array: %e A286236 1, 1, 3, 3, 10, 3, 21, 10, 21, 10, 55, 10 %e A286236 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A286236 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A286236 7, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A286236 11, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0 %e A286236 16, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0 %e A286236 22, 7, 8, 0, 0, 5, 0, 0, 0, 0, 0, 0 %e A286236 29, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0 %e A286236 37, 11, 0, 8, 0, 0, 0, 14, 0, 0, 0, 0 %e A286236 46, 0, 12, 0, 0, 0, 0, 0, 27, 0, 0, 0 %e A286236 56, 16, 0, 0, 19, 0, 0, 0, 0, 14, 0, 0 %e A286236 67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 65, 0 %e A286236 The first 15 rows when viewed as a triangle: %e A286236 1, %e A286236 1, 2, %e A286236 3, 0, 4, %e A286236 3, 0, 2, 7, %e A286236 10, 0, 0, 0, 11, %e A286236 3, 0, 0, 5, 4, 16, %e A286236 21, 0, 0, 0, 0, 0, 22, %e A286236 10, 0, 0, 0, 5, 0, 7, 29, %e A286236 21, 0, 0, 0, 0, 0, 8, 0, 37, %e A286236 10, 0, 0, 0, 0, 14, 0, 0, 11, 46, %e A286236 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, %e A286236 10, 0, 0, 0, 0, 0, 5, 0, 8, 12, 16, 67, %e A286236 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79, %e A286236 21, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 22, 92, %e A286236 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 17, 0, 106 %t A286236 T[n_, m_] := ((n + m)^2 - n - 3*m + 2)/2 %t A286236 t[n_, k_] := If[Mod[n, k] != 0, 0, T[EulerPhi[k], n/k]] %t A286236 Table[Reverse[t[n, #] & /@ Range[n]], {n, 1, 20}] (* _David Radcliffe_, Jun 12 2025 *) %o A286236 (Scheme) %o A286236 (define (A286236 n) (A286236bi (A002260 n) (A004736 n))) %o A286236 (define (A286236bi row col) (if (not (zero? (modulo (+ row col -1) col))) 0 (let ((a (A000010 col)) (b (/ (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2))))) %o A286236 ;; Alternatively, with triangular indexing: %o A286236 (define (A286236 n) (A286236tr (A002024 n) (A002260 n))) %o A286236 (define (A286236tr n k) (A286236bi k (+ 1 (- n k)))) %o A286236 (Python) %o A286236 from sympy import totient %o A286236 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A286236 def t(n, k): return 0 if n%k!=0 else T(totient(k), n//k) %o A286236 for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)][::-1]) # _Indranil Ghosh_, May 10 2017 %Y A286236 Transpose: A286237. %Y A286236 Cf. A000010, A000027, A113998, A286156, A286234, A286246. %K A286236 nonn,tabl %O A286236 1,3 %A A286236 _Antti Karttunen_, May 05 2017