This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286244 #23 Jun 10 2025 13:53:37 %S A286244 1,3,2,3,3,4,10,3,5,7,3,10,3,5,11,21,3,10,5,8,16,3,21,3,10,5,8,22,36, %T A286244 3,21,3,14,5,12,29,10,36,3,21,3,14,8,12,37,21,10,36,3,21,5,14,8,17,46, %U A286244 3,21,10,36,3,21,5,14,8,17,56,78,3,21,10,36,3,27,5,19,12,23,67,3,78,3,21,10,36,3,27,5,19,12,23,79 %N A286244 Square array A(n,k) = P(A046523(k), floor((n+k-1)/k)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N. %C A286244 Transpose of A286245. %H A286244 Antti Karttunen, <a href="/A286244/b286244.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array</a> %H A286244 MathWorld, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %e A286244 The top left 12 X 12 corner of the array: %e A286244 1, 3, 3, 10, 3, 21, 3, 36, 10, 21, 3, 78 %e A286244 2, 3, 3, 10, 3, 21, 3, 36, 10, 21, 3, 78 %e A286244 4, 5, 3, 10, 3, 21, 3, 36, 10, 21, 3, 78 %e A286244 7, 5, 5, 10, 3, 21, 3, 36, 10, 21, 3, 78 %e A286244 11, 8, 5, 14, 3, 21, 3, 36, 10, 21, 3, 78 %e A286244 16, 8, 5, 14, 5, 21, 3, 36, 10, 21, 3, 78 %e A286244 22, 12, 8, 14, 5, 27, 3, 36, 10, 21, 3, 78 %e A286244 29, 12, 8, 14, 5, 27, 5, 36, 10, 21, 3, 78 %e A286244 37, 17, 8, 19, 5, 27, 5, 44, 10, 21, 3, 78 %e A286244 46, 17, 12, 19, 5, 27, 5, 44, 14, 21, 3, 78 %e A286244 56, 23, 12, 19, 8, 27, 5, 44, 14, 27, 3, 78 %e A286244 67, 23, 12, 19, 8, 27, 5, 44, 14, 27, 5, 78 %e A286244 The first fifteen rows when viewed as a triangle: %e A286244 1, %e A286244 3, 2, %e A286244 3, 3, 4, %e A286244 10, 3, 5, 7, %e A286244 3, 10, 3, 5, 11, %e A286244 21, 3, 10, 5, 8, 16, %e A286244 3, 21, 3, 10, 5, 8, 22, %e A286244 36, 3, 21, 3, 14, 5, 12, 29, %e A286244 10, 36, 3, 21, 3, 14, 8, 12, 37, %e A286244 21, 10, 36, 3, 21, 5, 14, 8, 17, 46, %e A286244 3, 21, 10, 36, 3, 21, 5, 14, 8, 17, 56, %e A286244 78, 3, 21, 10, 36, 3, 27, 5, 19, 12, 23, 67, %e A286244 3, 78, 3, 21, 10, 36, 3, 27, 5, 19, 12, 23, 79, %e A286244 21, 3, 78, 3, 21, 10, 36, 5, 27, 5, 19, 12, 30, 92, %e A286244 21, 21, 3, 78, 3, 21, 10, 36, 5, 27, 8, 19, 17, 30, 106 %o A286244 (Scheme) %o A286244 (define (A286244 n) (A286244bi (A002260 n) (A004736 n))) %o A286244 (define (A286244bi row col) (let ((a (A046523 col)) (b (quotient (+ row col -1) col))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))) %o A286244 (Python) %o A286244 from sympy import factorint %o A286244 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A286244 def P(n): %o A286244 f = factorint(n) %o A286244 return sorted([f[i] for i in f]) %o A286244 def a046523(n): %o A286244 x=1 %o A286244 while True: %o A286244 if P(n) == P(x): return x %o A286244 else: x+=1 %o A286244 def A(n, k): return T(a046523(k), int((n + k - 1)//k)) %o A286244 for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 09 2017 %Y A286244 Transpose: A286245. %Y A286244 Cf. A000027, A046523, A286156, A286246, A286234. %K A286244 nonn,tabl %O A286244 1,2 %A A286244 _Antti Karttunen_, May 06 2017