This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286245 #25 Jun 09 2025 18:23:10 %S A286245 1,2,3,4,3,3,7,5,3,10,11,5,3,10,3,16,8,5,10,3,21,22,8,5,10,3,21,3,29, %T A286245 12,5,14,3,21,3,36,37,12,8,14,3,21,3,36,10,46,17,8,14,5,21,3,36,10,21, %U A286245 56,17,8,14,5,21,3,36,10,21,3,67,23,12,19,5,27,3,36,10,21,3,78,79,23,12,19,5,27,3,36,10,21,3,78,3 %N A286245 Triangular table T(n,k) = P(A046523(k), floor(n/k)), read by rows as T(1,1), T(2,1), T(2,2), etc. Here P is sequence A000027 used as a pairing function N x N -> N. %C A286245 Equally: square array A(n,k) = P(A046523(n), floor((n+k-1)/n)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N. %H A286245 Antti Karttunen, <a href="/A286245/b286245.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of triangle/antidiagonals of array</a> %H A286245 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %F A286245 As a triangle (with n >= 1, 1 <= k <= n): %F A286245 T(n,k) = (1/2)*(2 + ((A046523(k)+floor(n/k))^2) - A046523(k) - 3*floor(n/k)). %e A286245 The first fifteen rows of triangle: %e A286245 1, %e A286245 2, 3, %e A286245 4, 3, 3, %e A286245 7, 5, 3, 10, %e A286245 11, 5, 3, 10, 3, %e A286245 16, 8, 5, 10, 3, 21, %e A286245 22, 8, 5, 10, 3, 21, 3, %e A286245 29, 12, 5, 14, 3, 21, 3, 36, %e A286245 37, 12, 8, 14, 3, 21, 3, 36, 10, %e A286245 46, 17, 8, 14, 5, 21, 3, 36, 10, 21, %e A286245 56, 17, 8, 14, 5, 21, 3, 36, 10, 21, 3, %e A286245 67, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, %e A286245 79, 23, 12, 19, 5, 27, 3, 36, 10, 21, 3, 78, 3, %e A286245 92, 30, 12, 19, 5, 27, 5, 36, 10, 21, 3, 78, 3, 21, %e A286245 106, 30, 17, 19, 8, 27, 5, 36, 10, 21, 3, 78, 3, 21, 21 %o A286245 (Scheme) %o A286245 (define (A286245 n) (A286245bi (A002260 n) (A004736 n))) %o A286245 (define (A286245bi row col) (let ((a (A046523 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))) %o A286245 (Python) %o A286245 from sympy import factorint %o A286245 def T(n, m): return ((n + m)**2 - n - 3*m + 2)//2 %o A286245 def P(n): %o A286245 f = factorint(n) %o A286245 return sorted([f[i] for i in f]) %o A286245 def a046523(n): %o A286245 x=1 %o A286245 while True: %o A286245 if P(n) == P(x): return x %o A286245 else: x+=1 %o A286245 def t(n, k): return T(a046523(k), int(n//k)) %o A286245 for n in range(1, 21): print([t(n, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 09 2017 %Y A286245 Transpose: A286244. %Y A286245 Cf. A000027, A046523, A286156. %Y A286245 Cf. A286247 (same triangle but with zeros in positions where k does not divide n), A286235. %K A286245 nonn,tabl %O A286245 1,2 %A A286245 _Antti Karttunen_, May 06 2017