This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286251 #12 Feb 16 2025 08:33:44 %S A286251 3,2,9,7,5,16,14,29,12,16,9,67,5,16,50,121,5,67,9,67,23,16,14,277,12, %T A286251 16,48,67,5,436,27,497,23,16,31,631,5,16,40,277,5,436,9,67,80,16,20, %U A286251 1129,12,67,31,67,5,277,40,277,23,16,9,1771,5,16,160,2017,23,436,9,67,23,436,14,2557,5,16,94,67,23,436,20,1129,138,16,9,1771,23,16,40,277,5 %N A286251 Compound filter: a(n) = P(A001511(1+n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function. %H A286251 Antti Karttunen, <a href="/A286251/b286251.txt">Table of n, a(n) for n = 1..10000</a> %H A286251 MathWorld, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing Function</a> %F A286251 a(n) = (1/2)*(2 + ((A001511(1+n)+A046523(n))^2) - A001511(1+n) - 3*A046523(n)). %o A286251 (PARI) %o A286251 A001511(n) = (1+valuation(n,2)); %o A286251 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011 %o A286251 A286251(n) = (2 + ((A001511(1+n)+A046523(n))^2) - A001511(1+n) - 3*A046523(n))/2; %o A286251 for(n=1, 10000, write("b286251.txt", n, " ", A286251(n))); %o A286251 (Scheme) (define (A286251 n) (* (/ 1 2) (+ (expt (+ (A001511 (+ 1 n)) (A046523 n)) 2) (- (A001511 (+ 1 n))) (- (* 3 (A046523 n))) 2))) %o A286251 (Python) %o A286251 from sympy import factorint %o A286251 def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") %o A286251 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 %o A286251 def P(n): %o A286251 f = factorint(n) %o A286251 return sorted([f[i] for i in f]) %o A286251 def a046523(n): %o A286251 x=1 %o A286251 while True: %o A286251 if P(n) == P(x): return x %o A286251 else: x+=1 %o A286251 def a(n): return T(a001511(n + 1), a046523(n)) # _Indranil Ghosh_, May 07 2017 %Y A286251 Cf. A000027, A001511, A046523, A286161, A286252, A286253, A286254. %K A286251 nonn %O A286251 1,1 %A A286251 _Antti Karttunen_, May 07 2017