A286281 a(n) = floor the elevator is on at the n-th stage of Ken Knowlton's elevator problem, version 2.
1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4
Offset: 1
Keywords
References
- Ken Knowlton, Email to R. L. Graham and N. J. A. Sloane, May 04 2017
Links
Programs
-
Maple
hit:=Array(1..50, 0); hit[1]:=1; a:=[1]; dir:=1; f:=1; for s from 2 to 1000 do if dir>0 or f=1 then f:=f+1; hit[f]:=hit[f]+1; dir:=1; else f:=f-1; dir:=-1; fi; a:=[op(a), f]; if (dir=1) and ((hit[f] mod f) = 0) then dir:=1; else dir:=-1; fi; od: a;
-
Mathematica
f[n_, m_: 20] := Block[{a = {}, r = ConstantArray[0, m], f = 1, d = 0}, Do[AppendTo[a, f]; If[d == 1, r = MapAt[# + 1 &, r, f]]; If[Or[And[ Divisible[r[[f]], f], d == 1], f == 1], f++; d = 1, f--; d = -1], {i, n}]; a]; f@ 100 (* Michael De Vlieger, May 10 2017 *)
Comments