This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286286 #34 Feb 13 2024 08:14:04 %S A286286 0,1,4,21,148,1333,14664,190633,2859496,48611433,923617228, %T A286286 19395961789,446107121148,11152678028701,301122306774928, %U A286286 8732546896472913,270708953790660304,8933395475091790033,312668841628212651156,11568747140243868092773 %N A286286 a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1. %H A286286 Seiichi Manyama, <a href="/A286286/b286286.txt">Table of n, a(n) for n = 0..404</a> %F A286286 a(n) = (2*n-1)!! * Sum_{k=1..n} 1/(2*k-1)!!. - _Seiichi Manyama_, Sep 02 2017 %F A286286 a(n) = floor((2*n-1)!!*A060196), for n > 0. - _Peter McNair_, Dec 10 2021 %F A286286 From _Peter Bala_, Feb 09 2024: (Start) %F A286286 a(n) = 2*n*a(n-1) - (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1. %F A286286 The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} 1/(2*k-1)!! = A060196 = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). (End) %t A286286 NestList[{(2 #2 - 1) #1 + 1, #2 + 1} & @@ # &, {0, 1}, 19][[All, 1]] (* _Michael De Vlieger_, Dec 10 2021 *) %Y A286286 Conjectured to give indices of records in A132424. %Y A286286 Cf. A001147, A002627 (similar sequence), A000522, A060196. %K A286286 nonn,easy %O A286286 0,3 %A A286286 _N. J. A. Sloane_, May 15 2017