This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286302 #6 May 06 2017 10:23:48 %S A286302 1,2,3,4,5,7,8,9,10,13,16,17,22,24,25,26,31,36,58,64,76,82,120,170, %T A286302 193,196,214,324,328,370,412,562,676,730,10404 %N A286302 Numbers n such that A133364(n) <= 1. %C A286302 Numbers n such that there is at most one representation n = m+p with m in A001694 and p prime. %C A286302 There are no more terms <= 10^7. %C A286302 The only n <= 10^7 for which A133364(n) = 0 are 1, 2, and 5. %C A286302 Conjecture: 10404 is the last term. %H A286302 Math Overflow, <a href="https://mathoverflow.net/questions/269080/is-every-powerful-number-the-sum-of-a-powerful-number-and-a-prime#comment665409_269080">Is every powerful number the sum of a powerful number and a prime?</a>. %p A286302 N:= 10^7: # to get all terms <= N %p A286302 q:= proc(x,N) local p,R; %p A286302 R:= {x}; %p A286302 for p in numtheory:-factorset(x) do %p A286302 R:= map(t -> seq(t*p^i,i=0..floor(log[p](N/t))), R) %p A286302 od; %p A286302 R %p A286302 end proc: %p A286302 Pow:= `union`(seq(q(n^2,N),n=1..isqrt(N))): %p A286302 Primes:= select(isprime, [2,seq(i,i=3..N,2)]): %p A286302 CPow:= Vector(N): CPow[convert(Pow,list)]:= 1: %p A286302 CPrimes:= Vector(N): CPrimes[Primes]:= 1: %p A286302 Conv:= SignalProcessing:-Convolution(CPow,CPrimes): %p A286302 select(t -> Conv[t-1] < 1.5, [$2..N]); %Y A286302 Cf. A001694, A133364. %K A286302 nonn %O A286302 1,2 %A A286302 _Robert Israel_, May 05 2017