This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286306 #10 Jul 29 2018 20:46:21 %S A286306 1,1,3,27,441,11529,442827,23444883,1636819569,145703137041, %T A286306 16106380394643,2164638920874507,347592265948756521, %U A286306 65724760945840254489,14454276753061349098587,3658147171522531111996803,1055646229815910768764248289,344553616791279239828059918881 %N A286306 a(n) = coefficient of x^(2*n)/(2*n)! in exp( integral ( sn(x, 1/2) / cd(x, 1/2) ) dx). %H A286306 G. C. Greubel, <a href="/A286306/b286306.txt">Table of n, a(n) for n = 0..249</a> %F A286306 Given e.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n) / (2*n)!, then 0 = 1 + 2*A'^2 - A*A''. %F A286306 Given e.g.f. A(x), then A'(x) / A(x) = B(x) where B() is the e.g.f. for A242240. %F A286306 Given e.g.f. A(x), 1 / A(x) = A(-x). %F A286306 A159600(n) = (-1)^n * a(n). A159601(n) = -(-1)^n * a(n) if n>0. %F A286306 A190904(2*n) = A193541(n) = (-1)^floor(n/2) * a(n). A193544(n) = (-1)^floor((n+1)/2) * a(n). %e A286306 G.f. = 1 + x + 3*x^2 + 27*x^3 + 441*x^4 + 11529*x^5 + 442827*x^6 + ... %e A286306 E.g.f. = 1 + 1*x^2/2! + 3*x^4/4! + 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! + ... %t A286306 a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Exp[ Integrate[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], x]], {x, 0, m}]]]; %t A286306 a:= With[{nmax = 110}, CoefficientList[Series[Exp[Integrate[JacobiSN[x, 1/2]/JacobiCD[x, 1/2], x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jul 29 2018 *) %o A286306 (PARI) {a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( exp( intformal( serreverse( intformal( (1 + x^4 + x * O(x^m))^(-1/2))))), m))}; %Y A286306 Cf. A159600, A159601, A190904, A193541, A193544, A242240. %K A286306 nonn %O A286306 0,3 %A A286306 _Michael Somos_, May 05 2017