This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286314 #19 May 07 2017 05:30:47 %S A286314 6,231,20400,2003001,200045352,20000567352,1959085094400, %T A286314 200000030000001,20118337236261000,1999999999505541852, %U A286314 200000000030000000001,19994255180823548693100,1959183673472326530612252,200000000000105810631542400,20118343160415860069040000000 %N A286314 Number of representations of 10^n as sum of 6 triangular numbers. %C A286314 a(n) is nearly 2*10^(2*n) because a(n) is almost (4*10^n+3)^2 / 8. %H A286314 Seiichi Manyama, <a href="/A286314/b286314.txt">Table of n, a(n) for n = 0..17</a> %F A286314 a(n) = A008440(10^n). %F A286314 a(n) = 1/8 * (Sum_{d|4*10^n+3, d == 3 mod 4} d^2 - Sum_{d|4*10^n+3, d == 1 mod 4} d^2). %e A286314 a(0) = 1/8 * (Sum_{d|7, d == 3 mod 4} d^2 - Sum_{d|7, d == 1 mod 4} d^2) = 1/8 * (7^2 - 1^2) = 6. %e A286314 a(1) = 1/8 * (Sum_{d|43, d == 3 mod 4} d^2 - Sum_{d|43, d == 1 mod 4} d^2) = 1/8 * (43^2 - 1^2) = 231. %e A286314 a(2) = 1/8 * (Sum_{d|403, d == 3 mod 4} d^2 - Sum_{d|403, d == 1 mod 4} d^2) = 1/8 * (403^2 + 31^2 - 13^2 - 1^2) = 20400. %Y A286314 Cf. A008440, A286315. %K A286314 nonn %O A286314 0,1 %A A286314 _Seiichi Manyama_, May 06 2017 %E A286314 More terms from _Seiichi Manyama_, May 07 2017