cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286315 Number of representations of 10^n as sum of 8 triangular numbers.

This page as a plain text file.
%I A286315 #19 May 07 2017 05:30:29
%S A286315 8,1332,1030302,1007141184,1000302990372,1000781337641904,
%T A286315 1000003970597090004,1000751615026326041904,1000203571630368710405892,
%U A286315 1004272191614371538730009600,1000000970912716777250166728808,1000834130646589459517111102258880
%N A286315 Number of representations of 10^n as sum of 8 triangular numbers.
%C A286315 a(n) is nearly 10^(3*n) because a(n) is almost (10^n+1)^3.
%H A286315 Seiichi Manyama, <a href="/A286315/b286315.txt">Table of n, a(n) for n = 0..18</a>
%F A286315 a(n) = A007331(10^n + 1).
%F A286315 a(n) = Sum_{d|10^n+1, (10^n+1)/d == 1 mod 2} d^3.
%e A286315 a(0) = Sum_{d|2, 2/d == 1 mod 2} d^3 = 2^3 = 8.
%e A286315 a(1) = Sum_{d|11, 11/d == 1 mod 2} d^3 = 11^3 + 1^3 = 1332.
%e A286315 a(2) = Sum_{d|101, 101/d == 1 mod 2} d^3 = 101^3 + 1^3 = 1030302.
%Y A286315 Cf. A007331, A062397 (10^n+1), A168575 ((10^n+1)^3), A286314.
%K A286315 nonn
%O A286315 0,1
%A A286315 _Seiichi Manyama_, May 06 2017