This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286335 #20 Sep 03 2019 15:23:46 %S A286335 1,1,0,1,1,0,1,2,1,0,1,3,3,2,0,1,4,6,6,2,0,1,5,10,13,9,3,0,1,6,15,24, %T A286335 24,14,4,0,1,7,21,40,51,42,22,5,0,1,8,28,62,95,100,73,32,6,0,1,9,36, %U A286335 91,162,206,190,120,46,8,0,1,10,45,128,259,384,425,344,192,66,10,0 %N A286335 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^k. %C A286335 A(n,k) is the number of partitions of n into distinct parts (or odd parts) with k types of each part. %H A286335 Seiichi Manyama, <a href="/A286335/b286335.txt">Antidiagonals n = 0..139, flattened</a> %H A286335 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A286335 G.f. of column k: Product_{j>=1} (1 + x^j)^k. %F A286335 A(n,k) = Sum_{i=0..k} binomial(k,i) * A308680(n,k-i). - _Alois P. Heinz_, Aug 29 2019 %e A286335 A(3,2) = 6 because we have [3], [3'], [2, 1], [2', 1], [2, 1'] and [2', 1'] (partitions of 3 into distinct parts with 2 types of each part). %e A286335 Also A(3,2) = 6 because we have [3], [3'], [1, 1, 1], [1, 1, 1'], [1, 1', 1'] and [1', 1', 1'] (partitions of 3 into odd parts with 2 types of each part). %e A286335 Square array begins: %e A286335 1, 1, 1, 1, 1, 1, ... %e A286335 0, 1, 2, 3, 4, 5, ... %e A286335 0, 1, 3, 6, 10, 15, ... %e A286335 0, 2, 6, 13, 24, 40, ... %e A286335 0, 2, 9, 24, 51, 95, ... %e A286335 0, 3, 14, 42, 100, 206, ... %p A286335 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( %p A286335 (t-> b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..n/i))) %p A286335 end: %p A286335 A:= (n, k)-> b(n$2, k): %p A286335 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Aug 29 2019 %t A286335 Table[Function[k, SeriesCoefficient[Product[(1 + x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %Y A286335 Columns k=0-32 give: A000007, A000009, A022567-A022596. %Y A286335 Rows n=0-2 give: A000012, A001477, A000217. %Y A286335 Main diagonal gives A270913. %Y A286335 Antidiagonal sums give A299106. %Y A286335 Cf. A144064, A286352, A308680. %K A286335 nonn,tabl %O A286335 0,8 %A A286335 _Ilya Gutkovskiy_, May 07 2017