This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286361 #14 May 09 2017 14:26:53 %S A286361 1,1,1,1,2,1,1,1,1,2,1,1,2,1,2,1,2,1,1,2,1,1,1,1,4,2,1,1,2,2,1,1,1,2, %T A286361 2,1,2,1,2,2,2,1,1,1,2,1,1,1,1,4,2,2,2,1,2,1,1,2,1,2,2,1,1,1,6,1,1,2, %U A286361 1,2,1,1,2,2,4,1,1,2,1,2,1,2,1,1,6,1,2,1,2,2,2,1,1,1,2,1,2,1,1,4,2,2,1,2,2,2,1,1,2,2,2,1,2,1,2,2,2,1,2,2 %N A286361 Least number with the same prime signature as {the largest divisor of n with only prime factors of the form 4k+1} has: a(n) = A046523(A170818(n)). %H A286361 Antti Karttunen, <a href="/A286361/b286361.txt">Table of n, a(n) for n = 1..10000</a> %F A286361 a(n) = A046523(A170818(n)). %F A286361 a(n) = A286363(A267099(n)). %o A286361 (Scheme) (define (A286361 n) (A046523 (A170818 n))) %o A286361 (Python) %o A286361 from sympy import factorint %o A286361 from operator import mul %o A286361 def P(n): %o A286361 f = factorint(n) %o A286361 return sorted([f[i] for i in f]) %o A286361 def a046523(n): %o A286361 x=1 %o A286361 while True: %o A286361 if P(n) == P(x): return x %o A286361 else: x+=1 %o A286361 def a072438(n): %o A286361 f = factorint(n) %o A286361 return 1 if n == 1 else reduce(mul, [1 if i%4==1 else i**f[i] for i in f]) %o A286361 def a(n): return a046523(n/a072438(n)) # _Indranil Ghosh_, May 09 2017 %Y A286361 Cf. A046523, A170818, A267099, A267113, A286363, A286364, A286365. %Y A286361 Differs from A063014 for the first time at n=25, where a(25) = 4, while A063014(25) = 3. %K A286361 nonn %O A286361 1,5 %A A286361 _Antti Karttunen_, May 08 2017