This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286374 #9 May 09 2017 17:37:22 %S A286374 1,2,2,6,2,12,6,12,2,30,12,48,6,210,12,24,2,30,30,420,12,360,48,30,6, %T A286374 120,210,1260,12,420,24,48,2,30,30,420,30,4620,420,480,12,420,360, %U A286374 1080,48,960,30,210,6,420,120,2310,210,3360,1260,1680,12,1260,420,6300,24,840,48,96,2,30,30,420,30,4620,420,2520,30,4620,4620,6720,420,9240,480,180 %N A286374 a(n) = A278222(n^2). %H A286374 Antti Karttunen, <a href="/A286374/b286374.txt">Table of n, a(n) for n = 0..16384</a> %H A286374 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A286374 a(n) = A278222(A000290(n)) = A278222(n^2). %o A286374 (Scheme) (define (A286374 n) (A278222 (* n n))) %o A286374 (Python) %o A286374 from sympy import prime, factorint %o A286374 import math %o A286374 def A(n): return n - 2**int(math.floor(math.log(n, 2))) %o A286374 def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n)) %o A286374 def a005940(n): return b(n - 1) %o A286374 def P(n): %o A286374 f = factorint(n) %o A286374 return sorted([f[i] for i in f]) %o A286374 def a046523(n): %o A286374 x=1 %o A286374 while True: %o A286374 if P(n) == P(x): return x %o A286374 else: x+=1 %o A286374 def a278222(n): return a046523(a005940(n + 1)) %o A286374 def a(n): return a278222(n**2) # _Indranil Ghosh_, May 09 2017 %Y A286374 Cf. A000290, A278222, A286243, A286375, A286376, A286377. %Y A286374 Cf. A159918 (one of the matched sequences). %K A286374 nonn,base %O A286374 0,2 %A A286374 _Antti Karttunen_, May 09 2017