cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286393 Number of inequivalent n X n matrices over GF(7) under action of dihedral group of the square D_4.

This page as a plain text file.
%I A286393 #29 Apr 15 2021 15:18:53
%S A286393 1,7,406,5105212,4154189102413,167633579843887699759,
%T A286393 331466355732596931093508048522,
%U A286393 32115447190132359991237336502881651018804,152470060954479462517322396167243320349298407119379801
%N A286393 Number of inequivalent n X n matrices over GF(7) under action of dihedral group of the square D_4.
%C A286393 Burnside's orbit-counting lemma
%H A286393 María Merino, <a href="/A286393/b286393.txt">Table of n, a(n) for n = 0..34</a>
%H A286393 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque).
%F A286393 a(n) = (1/8)*(7^(n^2) + 2*7^(n^2/4) + 3*7^(n^2/2) + 2*7^((n^2 + n)/2)) if n is even;
%F A286393 a(n) = (1/8)*(7^(n^2) + 2*7^((n^2 + 3)/4) + 7^((n^2 + 1)/2) + 4*7^((n^2 + n)/2)) if n is odd.
%Y A286393 Column k=7 of A343097.
%Y A286393 Cf. A054247, A054739, A054751, A054752, A286392.
%K A286393 nonn
%O A286393 0,2
%A A286393 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 08 2017