cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286394 Number of inequivalent n X n matrices over GF(8) under action of dihedral group of the square D_4.

This page as a plain text file.
%I A286394 #47 Apr 15 2021 15:22:57
%S A286394 1,8,666,16912512,35184646816768,4722366500530551259136,
%T A286394 40564819207305653446303190876160,
%U A286394 22300745198530623151211847196048401987796992,784637716923335095479473759060307277562325323313332617216
%N A286394 Number of inequivalent n X n matrices over GF(8) under action of dihedral group of the square D_4.
%C A286394 Burnside's orbit-counting lemma.
%H A286394 María Merino, <a href="/A286394/b286394.txt">Table of n, a(n) for n = 0..33</a>
%H A286394 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque).
%F A286394 a(n) = (1/8)*(8^(n^2) + 2*8^(n^2/4) + 3*8^(n^2/2) + 2*8^((n^2 + n)/2)) if n is even;
%F A286394 a(n) = (1/8)*(8^(n^2) + 2*8^((n^2 + 3)/4) + 8^((n^2 + 1)/2) + 4*8^((n^2  +n)/2)) if n is odd.
%Y A286394 Column k=8 of A343097.
%Y A286394 Cf. A054247, A054739, A054751, A054752, A286392, A286393.
%K A286394 nonn
%O A286394 0,2
%A A286394 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 08 2017