This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286396 #38 Apr 15 2021 16:03:22 %S A286396 1,9,1035,48700845,231628411446741,89737248564744874067889, %T A286396 2816049943117424212512789695666175, %U A286396 7158021121277935153545945911617993395398302485,1473773072217322896440109113309952350877179744639518847951721 %N A286396 Number of inequivalent n X n matrices over GF(9) under action of dihedral group of the square D_4. %C A286396 Burnside's orbit-counting lemma. %H A286396 María Merino, <a href="/A286396/b286396.txt">Table of n, a(n) for n = 0..32</a> %H A286396 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A286396 a(n) = (1/8)*(9^(n^2) + 2*9^(n^2/4) + 3*9^(n^2/2) + 2*9^((n^2 + n)/2)) if n is even; %F A286396 a(n) = (1/8)*(9^(n^2) + 2*9^((n^2 + 3)/4) + 9^((n^2 + 1)/2) + 4*9^((n^2 + n)/2)) if n is odd. %t A286396 Table[1/8*(9^(n^2) + 2*9^((n^2 + 3 #)/4) + (3 - 2 #)*9^((n^2 + #)/2) + (2 + 2 #)*9^((n^2 + n)/2)) &@ Boole@ OddQ@ n, {n, 0, 7}] (* _Michael De Vlieger_, May 12 2017 *) %Y A286396 Column k=9 of A343097. %Y A286396 Cf. A054247, A054739, A054751, A054752, A286392, A286393, A286394. %K A286396 nonn %O A286396 0,2 %A A286396 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 08 2017