This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286432 #30 Mar 06 2022 08:42:21 %S A286432 0,1,12,151,2545,54466,1417318,43472780,1536228588,61466251616, %T A286432 2746907348768,135619260805568,7331022129923648,430638151053316480, %U A286432 27315015477709844352,1860627613021322933248,135465573609158928964096,10498038569346091127451136,862792664850194915870874112 %N A286432 Numbers of labeled rooted Greg trees (A005264) with n nodes and root degree 2. %C A286432 Numbers of rooted Greg trees with 2 subtrees below root given m labeled nodes (lead index). Among all trees at the same index (see sequence A005264) root bifurcating trees play a central role in philological discourse on the reconstruction of manuscript genealogies. Labeled nodes represent surviving manuscripts, unlabeled nodes hypothetical ones. See also stemmatology/stemmatics, Bédier's paradox. %D A286432 J. Bédier. La tradition manuscrite du Lai de l'Ombre: Réflexions sur l'Art d' Éditer les Anciens Textes. Romania 394 (1928), 161-196/321-356. %D A286432 C. Flight. How many stemmata? Manuscripta 34(2), 1990, 122-128. %D A286432 W. Hering. Zweispaltige Stemmata. Philologus-Zeitschrift für antike Literatur und ihre Rezeption 111(1-2), (1967), 170-185. %D A286432 P. Maas. Textkritik. 4. Auflage. Leipzig: Teubner. 1960. %H A286432 Armin Hoenen, <a href="/A286432/b286432.txt">Table of n, a(n) for n = 1..245</a> %H A286432 Armin Hoenen, S. Eger and R. Gehrke, <a href="http://dx.doi.org/10.18653/v1/W17-3402">How many stemmata with root degree k?</a>, Proceedings of MOL 2017, 2017. %F A286432 T_{m,2} = Sum_{n >= 0} T_{m,n,2}, where T_{m,n,k} = (m/k!) * Sum_{(s,p) in C((m-1,n),k)} (binomial(m-1,s) F(s,p)) + (1/k!) * Sum_{(s,p) in C((m,n-1),k)} (binomial(m,s) F(s,p)), with F(s,p) = Product_{1..k} (g(s_i,p_i)), here g(m,n) = numbers of rooted Greg trees, see (A005264) with m labeled and n unlabeled nodes. s and p are tuples with k elements where each s_i >= 1 and for each p_i : 0 <= p_i < s_i; first term in T_{m,n,k} gives the number of trees with a labeled root, second those for root unlabeled. %e A286432 For n=3, T_{3,2} is T_{3,0,2} + T_{3,1,2} + T_{3,2,2} where T_{3,0,2} = (3/2) * (binomial(2,(1,1)) * product(g(1,0)*g(1,0))) + 0 = 3; T_{3,1,2} = 0 + 1/2 * ((binomial(3,(2,1)) * product(g(2,0)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,0)))) = 6 and T_{3,2,2} = 0 + (1/2) * ((binomial(3,(2,1)) * product(g(2,1)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,1)))) = 3; 3 + 6 + 3 =12. %Y A286432 Cf. A005264, number of labeled rooted Greg trees with n nodes. %Y A286432 Cf. A005263, unrooted Greg trees, according to Flight (1990) can also serve as basis for computation of A005624. %K A286432 nonn %O A286432 1,3 %A A286432 _Armin Hoenen_, May 09 2017