A286437
Number of ways to tile an n X n X n triangular area with two 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-8) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 9, 48, 153, 372, 765, 1404, 2373, 3768, 5697, 8280, 11649, 15948, 21333, 27972, 36045, 45744, 57273, 70848, 86697, 105060, 126189, 150348, 177813, 208872, 243825, 282984, 326673, 375228, 428997, 488340, 553629, 625248, 703593, 789072, 882105, 983124, 1092573
Offset: 3
There are 9 ways of tiling a triangular area of side 4 with two tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See example in links section.
A286438
Number of ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 4, 63, 494, 2247, 7396, 19739, 45518, 94259, 179732, 321031, 543774, 881423, 1376724, 2083267, 3067166, 4408859, 6205028, 8570639, 11641102, 15574551, 20554244, 26791083, 34526254, 44033987, 55624436, 69646679, 86491838, 106596319, 130445172, 158575571, 191580414
Offset: 3
There are 4 ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Example for n=4
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
A286439
Number of ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 1, 25, 747, 7459, 42983, 176373, 575775, 1595487, 3908979, 8701313, 17936083, 34713675, 63739327, 111921149, 189119943, 309074343, 490526475, 758575017, 1146284219, 1696579123, 2464458903, 3519561925, 4949117807, 6861323439, 9389181603, 12694842513, 16974490275
Offset: 3
There are 25 ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See example in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 5X5X5 area
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A286440
Number of ways to tile an n X n X n triangular area with five 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-20) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 546, 14064, 157248, 1056516, 5086902, 19399860, 62311740, 175452816, 445146906, 1037833944, 2255992584, 4622997276, 9007684494, 16802136156, 30169344996, 52381036968, 88270019922, 144826036032, 231969248016, 363541216308, 558559556262, 842789431428, 1250692671180
Offset: 5
There are 546 ways of tiling a triangular area of side 6 with 5 tiles of side 2 and an appropriate number (= 16) of tiles of side 1. See illustration in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 5..100
- Heinrich Ludwig, Illustration of tiling a 6X6X6 area
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
A286441
Number of ways to tile an n X n X n triangular area with six 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-24) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 219, 15160, 369787, 4366982, 32450843, 175628996, 755759531, 2734928266, 8643796747, 24503068784, 63522668395, 152816062222, 345005930315, 737473609532, 1503178571195, 2938515130514, 5535661080283, 10089397100584, 17851538034587, 30750030827926, 51694565135803
Offset: 5
There are 219 ways of tiling a triangular area of side 6 with 6 tiles of side 2 and an appropriate number (= 12) of tiles of side 1. See illustration in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 5..100
- Heinrich Ludwig, Illustration of tiling a 6X6X6 area
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
concat(0, Vec( x^6*(219 + 12313*x + 189789*x^2 + 679597*x^3 + 344288*x^4 - 808902*x^5 + 54074*x^6 + 289970*x^7 - 51453*x^8 - 71891*x^9 + 27785*x^10 - 255*x^11 + 98*x^12 - 352*x^13) / (1 - x)^13 + O(x^60))) \\ Colin Barker, May 13 2017
A286442
Number of ways to tile an n X n X n triangular area with seven 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-28) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 57, 9233, 563287, 12649059, 152516103, 1211235921, 7147857411, 33812251267, 134823778299, 469266000129, 1462057867743, 4154650828483, 10922915001087, 26867398129329, 62381437357035, 137705497065315, 290721776912275, 589883390417697, 1155073034088999, 2190429436721571
Offset: 5
There are 57 ways of tiling a triangular area of side 6 with 7 tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See illustration in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 5..100
- Heinrich Ludwig, Illustration of tiling a 6X6X6 area
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
concat(0, Vec(x^6*(57 + 8378*x + 430777*x^2 + 5143284*x^3 + 17802143*x^4 + 7781860*x^5 - 20367093*x^6 - 406014*x^7 + 12253687*x^8 - 5320950*x^9 - 731329*x^10 + 627984*x^11 + 198177*x^12 - 135016*x^13 + 10557*x^14 - 198*x^15 + 976*x^16) / (1 - x)^15 + O(x^30))) \\ Colin Barker, May 16 2017
A286443
Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1
The triangle begins with T(1, 0)
1;
1, 1;
1, 1;
1, 3, 3, 2, 1;
1, 4, 10, 14, 6;
1, 6, 32, 97, 142, 105, 46, 14, 3, 1;
1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
Showing 1-7 of 7 results.
Comments