cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A286437 Number of ways to tile an n X n X n triangular area with two 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-8) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 9, 48, 153, 372, 765, 1404, 2373, 3768, 5697, 8280, 11649, 15948, 21333, 27972, 36045, 45744, 57273, 70848, 86697, 105060, 126189, 150348, 177813, 208872, 243825, 282984, 326673, 375228, 428997, 488340, 553629, 625248, 703593, 789072, 882105, 983124, 1092573
Offset: 3

Views

Author

Heinrich Ludwig, May 10 2017

Keywords

Comments

Rotations and reflections of tilings are counted. If they are to be ignored, see A286444. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A061995.

Examples

			There are 9 ways of tiling a triangular area of side 4 with two tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See example in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(3*x^4*(3 + x + x^2 - x^3) / (1 - x)^5 + O(x^60))) \\ Colin Barker, May 12 2017

Formula

a(n) = (n^4 - 6*n^3 + 5*n^2 + 30*n - 54)/2, n>=3.
From Colin Barker, May 12 2017: (Start)
G.f.: 3*x^4*(3 + x + x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
(End)

A286438 Number of ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 4, 63, 494, 2247, 7396, 19739, 45518, 94259, 179732, 321031, 543774, 881423, 1376724, 2083267, 3067166, 4408859, 6205028, 8570639, 11641102, 15574551, 20554244, 26791083, 34526254, 44033987, 55624436, 69646679, 86491838, 106596319, 130445172, 158575571, 191580414
Offset: 3

Views

Author

Heinrich Ludwig, May 11 2017

Keywords

Comments

Rotations and reflections of tilings are counted. If they are to be ignored, see A286445. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061996.

Examples

			There are 4 ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7 + O(x^30))) \\ Colin Barker, May 11 2017

Formula

a(n) = (n^6 - 9*n^5 + 6*n^4 + 153*n^3 - 361*n^2 - 564*n + 1848)/6 for n>=4.
G.f.: x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7. - Colin Barker, May 11 2017

A286439 Number of ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 1, 25, 747, 7459, 42983, 176373, 575775, 1595487, 3908979, 8701313, 17936083, 34713675, 63739327, 111921149, 189119943, 309074343, 490526475, 758575017, 1146284219, 1696579123, 2464458903, 3519561925, 4949117807, 6861323439, 9389181603, 12694842513, 16974490275
Offset: 3

Views

Author

Heinrich Ludwig, May 11 2017

Keywords

Comments

Rotations and reflections of tilings are counted. If they are to be ignored, see A286446. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061997.

Examples

			There are 25 ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See example in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^4*(1 + 16*x + 558*x^2 + 1552*x^3 + 770*x^4 - 1674*x^5 + 306*x^6 + 144*x^7 + 45*x^8 - 38*x^9) / (1 - x)^9 + O(x^60))) \\ Colin Barker, May 12 2017

Formula

a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1279*n^4 -4692*n^3 +20592*n^2 +13320*n -91800)/24, for n>=5.
G.f.: x^4*(1 + 16*x + 558*x^2 + 1552*x^3 + 770*x^4 - 1674*x^5 + 306*x^6 + 144*x^7 + 45*x^8 - 38*x^9) / (1 - x)^9. - Colin Barker, May 12 2017

A286440 Number of ways to tile an n X n X n triangular area with five 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-20) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 546, 14064, 157248, 1056516, 5086902, 19399860, 62311740, 175452816, 445146906, 1037833944, 2255992584, 4622997276, 9007684494, 16802136156, 30169344996, 52381036968, 88270019922, 144826036032, 231969248016, 363541216308, 558559556262, 842789431428, 1250692671180
Offset: 5

Views

Author

Heinrich Ludwig, May 12 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061998.

Examples

			There are 546 ways of tiling a triangular area of side 6 with 5 tiles of side 2 and an appropriate number (= 16) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, May 12 2017

Formula

a(n) = (n^10 -15*n^9 +5*n^8 +930*n^7 -3325*n^6 -19863*n^5 +109915*n^4 +155100*n^3 -1365876*n^2 -191592*n +5981760)/120 for n >= 6.
G.f.: 6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11. - Colin Barker, May 12 2017

A286441 Number of ways to tile an n X n X n triangular area with six 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-24) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 219, 15160, 369787, 4366982, 32450843, 175628996, 755759531, 2734928266, 8643796747, 24503068784, 63522668395, 152816062222, 345005930315, 737473609532, 1503178571195, 2938515130514, 5535661080283, 10089397100584, 17851538034587, 30750030827926, 51694565135803
Offset: 5

Views

Author

Heinrich Ludwig, May 12 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A172158.

Examples

			There are 219 ways of tiling a triangular area of side 6 with 6 tiles of side 2 and an appropriate number (= 12) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec( x^6*(219 + 12313*x + 189789*x^2 + 679597*x^3 + 344288*x^4 - 808902*x^5 + 54074*x^6 + 289970*x^7 - 51453*x^8 - 71891*x^9 + 27785*x^10 - 255*x^11 + 98*x^12 - 352*x^13) / (1 - x)^13 + O(x^60))) \\ Colin Barker, May 13 2017

Formula

a(n) = (n^12 - 18*n^11 + 3*n^10 + 1710*n^9 - 7175*n^8 - 60078*n^7 + 401649*n^6 + 884466*n^5 - 9521846*n^4 - 3238224*n^3 + 107453448*n^2 - 25651296*n - 483140880)/720 for n >= 7.
G.f.: x^6*(219 + 12313*x + 189789*x^2 + 679597*x^3 + 344288*x^4 - 808902*x^5 + 54074*x^6 + 289970*x^7 - 51453*x^8 - 71891*x^9 + 27785*x^10 - 255*x^11 + 98*x^12 - 352*x^13) / (1 - x)^13. - Colin Barker, May 13 2017

A286442 Number of ways to tile an n X n X n triangular area with seven 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-28) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 57, 9233, 563287, 12649059, 152516103, 1211235921, 7147857411, 33812251267, 134823778299, 469266000129, 1462057867743, 4154650828483, 10922915001087, 26867398129329, 62381437357035, 137705497065315, 290721776912275, 589883390417697, 1155073034088999, 2190429436721571
Offset: 5

Views

Author

Heinrich Ludwig, May 15 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A194788.

Examples

			There are 57 ways of tiling a triangular area of side 6 with 7 tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^6*(57 + 8378*x + 430777*x^2 + 5143284*x^3 + 17802143*x^4 + 7781860*x^5 - 20367093*x^6 - 406014*x^7 + 12253687*x^8 - 5320950*x^9 - 731329*x^10 + 627984*x^11 + 198177*x^12 - 135016*x^13 + 10557*x^14 - 198*x^15 + 976*x^16) / (1 - x)^15 + O(x^30))) \\ Colin Barker, May 16 2017

Formula

a(n) = (n^14 -21*n^13 +2835*n^11 -13664*n^10 -147903*n^9 +1159368*n^8 +3480705*n^7 -44292941*n^6 -24613344*n^5 +908186412*n^4 -372748320*n^3 -9895978296*n^2 +5596762608*n +46620962640)/5040 for n>=8.
G.f.: x^6*(57 + 8378*x + 430777*x^2 + 5143284*x^3 + 17802143*x^4 + 7781860*x^5 - 20367093*x^6 - 406014*x^7 + 12253687*x^8 - 5320950*x^9 - 731329*x^10 + 627984*x^11 + 198177*x^12 - 135016*x^13 + 10557*x^14 - 198*x^15 + 976*x^16) / (1 - x)^15. - Colin Barker, May 16 2017

A286443 Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1

Views

Author

Heinrich Ludwig, May 16 2017

Keywords

Comments

The triangle T(n, k) is irregularly shaped: For n >= 4: 0 <= k <= n^2/4 if n is even, 0 <= k <= (n^2 -9)/4 if n is odd. First row corresponds to n = 1.
Rotations and reflections of tilings are not counted. If they are to be counted, see A286436. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A236679.

Examples

			The triangle begins with T(1, 0)
   1;
   1,    1;
   1,    1;
   1,    3,    3,    2,    1;
   1,    4,   10,   14,    6;
   1,    6,   32,   97,  142,  105,   46,   14,    3,    1;
   1,    8,   70,  398, 1280, 2386, 2574, 1569,  524,   87,    3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
		

Crossrefs

Showing 1-7 of 7 results.