A286437 Number of ways to tile an n X n X n triangular area with two 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-8) of 1 X 1 X 1 tiles.
0, 9, 48, 153, 372, 765, 1404, 2373, 3768, 5697, 8280, 11649, 15948, 21333, 27972, 36045, 45744, 57273, 70848, 86697, 105060, 126189, 150348, 177813, 208872, 243825, 282984, 326673, 375228, 428997, 488340, 553629, 625248, 703593, 789072, 882105, 983124, 1092573
Offset: 3
Examples
There are 9 ways of tiling a triangular area of side 4 with two tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See example in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 4X4X4 area
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
PARI
concat(0, Vec(3*x^4*(3 + x + x^2 - x^3) / (1 - x)^5 + O(x^60))) \\ Colin Barker, May 12 2017
Formula
a(n) = (n^4 - 6*n^3 + 5*n^2 + 30*n - 54)/2, n>=3.
From Colin Barker, May 12 2017: (Start)
G.f.: 3*x^4*(3 + x + x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
(End)
Comments