A286438 Number of ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.
0, 4, 63, 494, 2247, 7396, 19739, 45518, 94259, 179732, 321031, 543774, 881423, 1376724, 2083267, 3067166, 4408859, 6205028, 8570639, 11641102, 15574551, 20554244, 26791083, 34526254, 44033987, 55624436, 69646679, 86491838, 106596319, 130445172, 158575571, 191580414
Offset: 3
Examples
There are 4 ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Example for n=4
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
PARI
concat(0, Vec(x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7 + O(x^30))) \\ Colin Barker, May 11 2017
Formula
a(n) = (n^6 - 9*n^5 + 6*n^4 + 153*n^3 - 361*n^2 - 564*n + 1848)/6 for n>=4.
G.f.: x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7. - Colin Barker, May 11 2017
Comments