A286439 Number of ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.
0, 1, 25, 747, 7459, 42983, 176373, 575775, 1595487, 3908979, 8701313, 17936083, 34713675, 63739327, 111921149, 189119943, 309074343, 490526475, 758575017, 1146284219, 1696579123, 2464458903, 3519561925, 4949117807, 6861323439, 9389181603, 12694842513, 16974490275
Offset: 3
Examples
There are 25 ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See example in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 5X5X5 area
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
PARI
concat(0, Vec(x^4*(1 + 16*x + 558*x^2 + 1552*x^3 + 770*x^4 - 1674*x^5 + 306*x^6 + 144*x^7 + 45*x^8 - 38*x^9) / (1 - x)^9 + O(x^60))) \\ Colin Barker, May 12 2017
Formula
a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1279*n^4 -4692*n^3 +20592*n^2 +13320*n -91800)/24, for n>=5.
G.f.: x^4*(1 + 16*x + 558*x^2 + 1552*x^3 + 770*x^4 - 1674*x^5 + 306*x^6 + 144*x^7 + 45*x^8 - 38*x^9) / (1 - x)^9. - Colin Barker, May 12 2017
Comments