A286440 Number of ways to tile an n X n X n triangular area with five 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-20) of 1 X 1 X 1 tiles.
0, 546, 14064, 157248, 1056516, 5086902, 19399860, 62311740, 175452816, 445146906, 1037833944, 2255992584, 4622997276, 9007684494, 16802136156, 30169344996, 52381036968, 88270019922, 144826036032, 231969248016, 363541216308, 558559556262, 842789431428, 1250692671180
Offset: 5
Examples
There are 546 ways of tiling a triangular area of side 6 with 5 tiles of side 2 and an appropriate number (= 16) of tiles of side 1. See illustration in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 5..100
- Heinrich Ludwig, Illustration of tiling a 6X6X6 area
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
PARI
concat(0, Vec(6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, May 12 2017
Formula
a(n) = (n^10 -15*n^9 +5*n^8 +930*n^7 -3325*n^6 -19863*n^5 +109915*n^4 +155100*n^3 -1365876*n^2 -191592*n +5981760)/120 for n >= 6.
G.f.: 6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11. - Colin Barker, May 12 2017
Comments