cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286440 Number of ways to tile an n X n X n triangular area with five 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-20) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 546, 14064, 157248, 1056516, 5086902, 19399860, 62311740, 175452816, 445146906, 1037833944, 2255992584, 4622997276, 9007684494, 16802136156, 30169344996, 52381036968, 88270019922, 144826036032, 231969248016, 363541216308, 558559556262, 842789431428, 1250692671180
Offset: 5

Views

Author

Heinrich Ludwig, May 12 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061998.

Examples

			There are 546 ways of tiling a triangular area of side 6 with 5 tiles of side 2 and an appropriate number (= 16) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, May 12 2017

Formula

a(n) = (n^10 -15*n^9 +5*n^8 +930*n^7 -3325*n^6 -19863*n^5 +109915*n^4 +155100*n^3 -1365876*n^2 -191592*n +5981760)/120 for n >= 6.
G.f.: 6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11. - Colin Barker, May 12 2017