cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286442 Number of ways to tile an n X n X n triangular area with seven 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-28) of 1 X 1 X 1 tiles.

Original entry on oeis.org

0, 57, 9233, 563287, 12649059, 152516103, 1211235921, 7147857411, 33812251267, 134823778299, 469266000129, 1462057867743, 4154650828483, 10922915001087, 26867398129329, 62381437357035, 137705497065315, 290721776912275, 589883390417697, 1155073034088999, 2190429436721571
Offset: 5

Views

Author

Heinrich Ludwig, May 15 2017

Keywords

Comments

Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A194788.

Examples

			There are 57 ways of tiling a triangular area of side 6 with 7 tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See illustration in links section.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^6*(57 + 8378*x + 430777*x^2 + 5143284*x^3 + 17802143*x^4 + 7781860*x^5 - 20367093*x^6 - 406014*x^7 + 12253687*x^8 - 5320950*x^9 - 731329*x^10 + 627984*x^11 + 198177*x^12 - 135016*x^13 + 10557*x^14 - 198*x^15 + 976*x^16) / (1 - x)^15 + O(x^30))) \\ Colin Barker, May 16 2017

Formula

a(n) = (n^14 -21*n^13 +2835*n^11 -13664*n^10 -147903*n^9 +1159368*n^8 +3480705*n^7 -44292941*n^6 -24613344*n^5 +908186412*n^4 -372748320*n^3 -9895978296*n^2 +5596762608*n +46620962640)/5040 for n>=8.
G.f.: x^6*(57 + 8378*x + 430777*x^2 + 5143284*x^3 + 17802143*x^4 + 7781860*x^5 - 20367093*x^6 - 406014*x^7 + 12253687*x^8 - 5320950*x^9 - 731329*x^10 + 627984*x^11 + 198177*x^12 - 135016*x^13 + 10557*x^14 - 198*x^15 + 976*x^16) / (1 - x)^15. - Colin Barker, May 16 2017