cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286443 Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1

Views

Author

Heinrich Ludwig, May 16 2017

Keywords

Comments

The triangle T(n, k) is irregularly shaped: For n >= 4: 0 <= k <= n^2/4 if n is even, 0 <= k <= (n^2 -9)/4 if n is odd. First row corresponds to n = 1.
Rotations and reflections of tilings are not counted. If they are to be counted, see A286436. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A236679.

Examples

			The triangle begins with T(1, 0)
   1;
   1,    1;
   1,    1;
   1,    3,    3,    2,    1;
   1,    4,   10,   14,    6;
   1,    6,   32,   97,  142,  105,   46,   14,    3,    1;
   1,    8,   70,  398, 1280, 2386, 2574, 1569,  524,   87,    3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
		

Crossrefs