A286444 Number of non-equivalent ways to tile an n X n X n triangular area with two 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-8) of 1 X 1 X 1 tiles.
0, 3, 10, 32, 70, 143, 252, 424, 660, 995, 1430, 2008, 2730, 3647, 4760, 6128, 7752, 9699, 11970, 14640, 17710, 21263, 25300, 29912, 35100, 40963, 47502, 54824, 62930, 71935, 81840, 92768, 104720, 117827, 132090, 147648, 164502, 182799, 202540, 223880, 246820, 271523
Offset: 3
Examples
There are 3 non-equivalent ways of tiling a triangular area of side 4 with two tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See example in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 4X4X4 area
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Programs
-
PARI
concat(0, Vec(x^4*(3 + x + 5*x^2 - x^3) / ((1 - x)^5*(1 + x)^2) + O(x^30))) \\ Colin Barker, May 12 2017
Formula
a(n) = (n^4 -6*n^3 +11*n^2 -12)/12 + IF(MOD(n, 2) = 1, -n +2)/2.
G.f.: x^4*(3 + x + 5*x^2 - x^3) / ((1 - x)^5*(1 + x)^2). - Colin Barker, May 12 2017
Comments