A286445 Number of non-equivalent ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.
0, 2, 14, 97, 398, 1290, 3366, 7731, 15888, 30248, 53850, 91147, 147496, 230290, 348148, 512457, 736204, 1035986, 1430420, 1942691, 2598470, 3429064, 4468784, 5758755, 7343670, 9276330, 11613714, 14422313, 17773458, 21749506, 26438362, 31940587, 38363044, 45826992
Offset: 3
Examples
There are 2 non-equivalent ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 4X4X4 area
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
Programs
-
PARI
concat(0, Vec(x^4*(2 + 8*x + 55*x^2 + 121*x^3 + 188*x^4 + 121*x^5 + 44*x^6 - 39*x^7 - 22*x^8 - 5*x^9 + 5*x^10 + 2*x^11) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, May 12 2017
Formula
a(n) = (n^6 -9*n^5 +6*n^4 +165*n^3 -447*n^2 -372*n +1736)/36 + IF(MOD(n, 2) = 1, -n^2 +6*n -9)/2 + IF(MOD(n, 3) = 0, -2)/9 for n >= 4.
G.f.: x^4*(2 + 8*x + 55*x^2 + 121*x^3 + 188*x^4 + 121*x^5 + 44*x^6 - 39*x^7 - 22*x^8 - 5*x^9 + 5*x^10 + 2*x^11) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2)). - Colin Barker, May 12 2017
Comments