A286439
Number of ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 1, 25, 747, 7459, 42983, 176373, 575775, 1595487, 3908979, 8701313, 17936083, 34713675, 63739327, 111921149, 189119943, 309074343, 490526475, 758575017, 1146284219, 1696579123, 2464458903, 3519561925, 4949117807, 6861323439, 9389181603, 12694842513, 16974490275
Offset: 3
There are 25 ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See example in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 5X5X5 area
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A286443
Irregular triangle read by rows: T(n, k) = number of non-equivalent ways to tile an n X n X n triangular area with k 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-4*k) of 1 X 1 X 1 tiles.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 4, 10, 14, 6, 1, 6, 32, 97, 142, 105, 46, 14, 3, 1, 1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3, 1, 11, 143, 1290, 7301, 26471, 62067, 94423, 93358, 60287, 25881, 7697, 1678, 281, 40, 5, 1, 1, 13, 252, 3366, 29603, 176591, 728868
Offset: 1
The triangle begins with T(1, 0)
1;
1, 1;
1, 1;
1, 3, 3, 2, 1;
1, 4, 10, 14, 6;
1, 6, 32, 97, 142, 105, 46, 14, 3, 1;
1, 8, 70, 398, 1280, 2386, 2574, 1569, 524, 87, 3;
T(4, 3) = 2 because there are 2 non-equivalent ways to tile an area of size 4X4X4 with 3 tiles of size 2X2X2 and fill up the rest with tiles of size 1X1X1.
A286444
Number of non-equivalent ways to tile an n X n X n triangular area with two 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-8) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 3, 10, 32, 70, 143, 252, 424, 660, 995, 1430, 2008, 2730, 3647, 4760, 6128, 7752, 9699, 11970, 14640, 17710, 21263, 25300, 29912, 35100, 40963, 47502, 54824, 62930, 71935, 81840, 92768, 104720, 117827, 132090, 147648, 164502, 182799, 202540, 223880, 246820, 271523
Offset: 3
There are 3 non-equivalent ways of tiling a triangular area of side 4 with two tiles of side 2 and an appropriate number (= 8) of tiles of side 1. See example in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 4X4X4 area
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
A286445
Number of non-equivalent ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.
Original entry on oeis.org
0, 2, 14, 97, 398, 1290, 3366, 7731, 15888, 30248, 53850, 91147, 147496, 230290, 348148, 512457, 736204, 1035986, 1430420, 1942691, 2598470, 3429064, 4468784, 5758755, 7343670, 9276330, 11613714, 14422313, 17773458, 21749506, 26438362, 31940587, 38363044, 45826992
Offset: 3
There are 2 non-equivalent ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
- Heinrich Ludwig, Table of n, a(n) for n = 3..100
- Heinrich Ludwig, Illustration of tiling a 4X4X4 area
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
Showing 1-4 of 4 results.
Comments