This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286466 #12 May 11 2017 11:41:09 %S A286466 1,2,5,12,2,16,5,38,7,16,9,94,2,16,23,138,2,67,5,80,16,16,9,355,7,16, %T A286466 38,80,2,436,5,530,16,16,40,706,2,16,23,302,2,436,5,80,67,16,9,1228,7, %U A286466 67,23,80,2,277,23,302,16,16,14,2021,2,16,80,2082,16,436,5,80,16,436,9,2704,2,16,80,80,16,436,5,1178,121,16,9,2086,16,16,23,302,2,1771 %N A286466 Compound filter: a(n) = P(A112049(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function. %C A286466 Here the information combined together to a(n) consists of A046523(n), giving essentially the prime signature of n, and the index of the first prime p >= 1 for which the Jacobi symbol J(p,2n+1) is not +1 (i.e. is either 0 or -1), the value which is returned by A112049(n). %H A286466 Antti Karttunen, <a href="/A286466/b286466.txt">Table of n, a(n) for n = 1..10000</a> %F A286466 a(n) = (1/2)*(2 + ((A112049(n)+A046523(n))^2) - A112049(n) - 3*A046523(n)). %o A286466 (PARI) %o A286466 A112049(n) = for(i=1,(2*n),if((kronecker(i,(n+n+1)) < 1),return(primepi(i)))); %o A286466 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011 %o A286466 A286466(n) = (1/2)*(2 + ((A112049(n)+A046523(n))^2) - A112049(n) - 3*A046523(n)); %o A286466 for(n=1, 10000, write("b286466.txt", n, " ", A286466(n))); %o A286466 (Scheme) (define (A286466 n) (* (/ 1 2) (+ (expt (+ (A112049 n) (A046523 n)) 2) (- (A112049 n)) (- (* 3 (A046523 n))) 2))) %o A286466 (Python) %o A286466 from sympy import jacobi_symbol as J, factorint, isprime, primepi %o A286466 def P(n): %o A286466 f = factorint(n) %o A286466 return sorted([f[i] for i in f]) %o A286466 def a046523(n): %o A286466 x=1 %o A286466 while True: %o A286466 if P(n) == P(x): return x %o A286466 else: x+=1 %o A286466 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 %o A286466 def a049084(n): return primepi(n) if isprime(n) else 0 %o A286466 def a112046(n): %o A286466 i=1 %o A286466 while True: %o A286466 if J(i, 2*n + 1)!=1: return i %o A286466 else: i+=1 %o A286466 def a112049(n): return a049084(a112046(n)) %o A286466 def a(n): return T(a112049(n), a046523(n)) # _Indranil Ghosh_, May 11 2017 %Y A286466 Cf. A000027, A046523, A112049, A286258, A286465. %K A286466 nonn %O A286466 1,2 %A A286466 _Antti Karttunen_, May 10 2017