This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286476 #11 May 12 2017 18:21:46 %S A286476 1,8,9,16,11,18,7,26,21,34,11,36,7,44,33,52,11,54,7,62,45,70,11,72,31, %T A286476 80,57,88,11,90,7,98,69,106,47,108,7,116,81,124,11,126,7,134,93,142, %U A286476 11,144,43,152,105,160,11,162,67,170,117,178,11,180,7,188,129,196,83,198,7,206,141,214,11,216,7,224,153,232,71,234,7,242,165,250,11,252,103 %N A286476 Compound filter: a(n) = 6*A032742(n) + (n mod 6), a(1) = 1. %H A286476 Antti Karttunen, <a href="/A286476/b286476.txt">Table of n, a(n) for n = 1..10000</a> %F A286476 a(1) = 1, for n > 1, a(n) = 6*A032742(n) + (n mod 6). %t A286476 With[{k = 6}, Table[If[n == 1, 1, k (Divisors[n][[-2]]) + Mod[n, k]], {n, 85}]] (* _Michael De Vlieger_, May 12 2017 *) %o A286476 (Scheme) (define (A286476 n) (if (= 1 n) n (+ (* 6 (A032742 n)) (modulo n 6)))) %o A286476 (Python) %o A286476 from sympy import divisors %o A286476 def a(n): return 1 if n==1 else 6*divisors(n)[-2] + n%6 # _Indranil Ghosh_, May 12 2017 %Y A286476 Cf. A032742, A285729, A286472, A286473, A286474, A286475. %K A286476 nonn %O A286476 1,2 %A A286476 _Antti Karttunen_, May 11 2017