A286497 Prime power Giuga numbers: composite numbers n > 1 such that -1/n + sum 1/p^k = 1, where the sum is over the prime powers p^k dividing n.
12, 30, 56, 306, 380, 858, 992, 1722, 2552, 2862, 16256, 30704, 66198, 73712, 86142, 249500, 629802, 1703872, 6127552, 16191736, 19127502, 35359900, 67100672, 101999900, 172173762, 182552538, 266677578, 575688042, 1180712682, 2214408306, 6179139056, 17179738112, 21083999500
Offset: 1
Keywords
Examples
n = 12 is in the sequence because -1/12 + 1/2 + 1/2^2 + 1/3 = 1. n = 18 is NOT in the sequence because -1/18 + 1/2 + 1/3 + 1/3^2 != 1.
Links
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
Programs
-
Mathematica
ok[n_] := Total[n/Flatten@ Table[e[[1]] ^ Range[e[[2]]], {e, FactorInteger@ n}]] - 1 == n; Select[Range[10^5], ok] (* Giovanni Resta, May 27 2017 *)
Extensions
a(20)-a(31) from Giovanni Resta, May 27 2017
a(32)-a(33) from Giovanni Resta, Jun 26 2017
Comments