This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286514 #22 Feb 16 2025 08:33:45 %S A286514 1,3,3,5,11,7,9,41,51,11,17,149,383,183,21,31,547,2865,2629,663,39,57, %T A286514 2007,21449,38437,18635,2435,71,105,7361,160579,561743,531669,133709, %U A286514 8935,131,193,27001,1202181,8207075,15179657,7455797,956009,32775,241 %N A286514 Array read by antidiagonals: T(m,n) = number of dominating sets in the stacked prism graph C_m X P_n. %H A286514 Stephan Mertens, <a href="/A286514/b286514.txt">Table of n, a(n) for n = 1..325</a> (first 91 terms from Andrew Howroyd) %H A286514 Stephan Mertens, <a href="https://arxiv.org/abs/2408.08053">Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph</a>, arXiv:2408.08053 [math.CO], Aug 2024. %H A286514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %H A286514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StackedPrismGraph.html">Stacked Prism Graph</a> %H A286514 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dominating_set">Dominating set</a> %e A286514 Table starts: %e A286514 =========================================================== %e A286514 m\n| 1 2 3 4 5 6 %e A286514 ---|------------------------------------------------------- %e A286514 1 | 1 3 5 9 17 31 ... %e A286514 2 | 3 11 41 149 547 2007 ... %e A286514 3 | 7 51 383 2865 21449 160579 ... %e A286514 4 | 11 183 2629 38437 561743 8207075 ... %e A286514 5 | 21 663 18635 531669 15179657 433200191 ... %e A286514 6 | 39 2435 133709 7455797 416118655 23213149395 ... %e A286514 7 | 71 8935 956009 104209625 11369806353 1239821606103 ... %e A286514 ... %Y A286514 Column 2 is A284702. %Y A286514 Row 3 is A285880. %Y A286514 Main diagonal is A286914. %Y A286514 Cf. A286513, A218354 (P_n X P_n). %K A286514 nonn,tabl %O A286514 1,2 %A A286514 _Andrew Howroyd_, May 10 2017