cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286514 Array read by antidiagonals: T(m,n) = number of dominating sets in the stacked prism graph C_m X P_n.

This page as a plain text file.
%I A286514 #22 Feb 16 2025 08:33:45
%S A286514 1,3,3,5,11,7,9,41,51,11,17,149,383,183,21,31,547,2865,2629,663,39,57,
%T A286514 2007,21449,38437,18635,2435,71,105,7361,160579,561743,531669,133709,
%U A286514 8935,131,193,27001,1202181,8207075,15179657,7455797,956009,32775,241
%N A286514 Array read by antidiagonals: T(m,n) = number of dominating sets in the stacked prism graph C_m X P_n.
%H A286514 Stephan Mertens, <a href="/A286514/b286514.txt">Table of n, a(n) for n = 1..325</a> (first 91 terms from Andrew Howroyd)
%H A286514 Stephan Mertens, <a href="https://arxiv.org/abs/2408.08053">Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph</a>, arXiv:2408.08053 [math.CO], Aug 2024.
%H A286514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>
%H A286514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StackedPrismGraph.html">Stacked Prism Graph</a>
%H A286514 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dominating_set">Dominating set</a>
%e A286514 Table starts:
%e A286514 ===========================================================
%e A286514 m\n|  1    2      3         4           5             6
%e A286514 ---|-------------------------------------------------------
%e A286514 1  |  1    3      5         9          17            31 ...
%e A286514 2  |  3   11     41       149         547          2007 ...
%e A286514 3  |  7   51    383      2865       21449        160579 ...
%e A286514 4  | 11  183   2629     38437      561743       8207075 ...
%e A286514 5  | 21  663  18635    531669    15179657     433200191 ...
%e A286514 6  | 39 2435 133709   7455797   416118655   23213149395 ...
%e A286514 7  | 71 8935 956009 104209625 11369806353 1239821606103 ...
%e A286514 ...
%Y A286514 Column 2 is A284702.
%Y A286514 Row 3 is A285880.
%Y A286514 Main diagonal is A286914.
%Y A286514 Cf. A286513, A218354 (P_n X P_n).
%K A286514 nonn,tabl
%O A286514 1,2
%A A286514 _Andrew Howroyd_, May 10 2017