cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286518 Number of finite connected sets of positive integers greater than one with least common multiple n.

This page as a plain text file.
%I A286518 #35 Feb 19 2024 16:49:25
%S A286518 1,1,1,2,1,4,1,4,2,4,1,20,1,4,4,8,1,20,1,20,4,4,1,88,2,4,4,20,1,96,1,
%T A286518 16,4,4,4,196,1,4,4,88,1,96,1,20,20,4,1,368,2,20,4,20,1,88,4,88,4,4,1,
%U A286518 1824,1,4,20,32,4,96,1,20,4,96,1,1688,1,4,20,20,4,96,1,368,8,4,1,1824,4,4,4,88,1,1824,4,20
%N A286518 Number of finite connected sets of positive integers greater than one with least common multiple n.
%C A286518 Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
%C A286518 a(n) depends only on prime signature of n (cf. A025487). - _Antti Karttunen_, Feb 17 2024
%H A286518 Antti Karttunen, <a href="/A286518/b286518.txt">Table of n, a(n) for n = 1..719</a>
%H A286518 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A286518 From _Antti Karttunen_, Feb 17 2024: (Start)
%F A286518 a(n) <= A069626(n).
%F A286518 It seems that a(n) >= A318670(n), for all n > 1.
%F A286518 (End)
%e A286518 The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
%t A286518 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A286518 Table[Length[Select[Subsets[Rest[Divisors[n]]],zsm[#]==={n}&]],{n,2,20}]
%o A286518 (PARI)
%o A286518 isconnected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
%o A286518 A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
%o A286518 A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ _Antti Karttunen_, Feb 17 2024
%Y A286518 Cf. A048143, A054921, A069626, A076078, A259936, A281116, A285572, A285573, A286520, A305193, A318670.
%K A286518 nonn
%O A286518 1,4
%A A286518 _Gus Wiseman_, Jul 24 2017
%E A286518 Term a(1)=1 prepended and more terms added by _Antti Karttunen_, Feb 17 2024