cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286519 Binary representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A286519 #16 Feb 16 2025 08:33:45
%S A286519 1,11,101,1111,11111,111111,1111111,11111111,111111111,1111111111,
%T A286519 11111111111,111111111111,1111111111111,11111111111111,
%U A286519 111111111111111,1111111111111111,11111111111111111,111111111111111111,1111111111111111111,11111111111111111111
%N A286519 Binary representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.
%C A286519 Initialized with a single black (ON) cell at stage zero.
%D A286519 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A286519 Robert Price, <a href="/A286519/b286519.txt">Table of n, a(n) for n = 0..126</a>
%H A286519 Robert Price, <a href="/A286519/a286519.tmp.txt">Diagrams of first 20 stages</a>
%H A286519 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A286519 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A286519 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A286519 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A286519 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A286519 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A286519 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A286519 Conjectures from _Colin Barker_, Jul 22 2017: (Start)
%F A286519 G.f.: (1 - 10*x^2 + 110*x^3 - 100*x^4) / ((1 - x)*(1 - 10*x)).
%F A286519 a(n) = (10^(1+n) - 1) / 9 for n>2.
%F A286519 a(n) = 11*a(n-1) - 10*a(n-2) for n>4.
%F A286519 (End)
%t A286519 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A286519 code = 659; stages = 128;
%t A286519 rule = IntegerDigits[code, 2, 10];
%t A286519 g = 2 * stages + 1; (* Maximum size of grid *)
%t A286519 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A286519 ca = a;
%t A286519 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A286519 PrependTo[ca, a];
%t A286519 (* Trim full grid to reflect growth by one cell at each stage *)
%t A286519 k = (Length[ca[[1]]] + 1)/2;
%t A286519 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A286519 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A286519 Cf. A286518, A286520, A286521.
%K A286519 nonn,easy
%O A286519 0,2
%A A286519 _Robert Price_, Jul 22 2017