cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286520 Number of finite connected sets of pairwise indivisible positive integers greater than one with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 5, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 17, 1, 1, 2, 1, 1, 5, 1, 2, 1, 5, 1, 9, 1, 1, 2, 2, 1, 5, 1, 4, 1, 1, 1, 17, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			The a(30)=5 sets are: {30}, {6,10}, {6,15}, {10,15}, {6,10,15}.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],And[!MemberQ[Tuples[#,2],{x_,y_}/;And[x