cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286521 Decimal representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A286521 #16 Feb 16 2025 08:33:45
%S A286521 1,3,5,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,
%T A286521 131071,262143,524287,1048575,2097151,4194303,8388607,16777215,
%U A286521 33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591
%N A286521 Decimal representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.
%C A286521 Initialized with a single black (ON) cell at stage zero.
%D A286521 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A286521 Robert Price, <a href="/A286521/b286521.txt">Table of n, a(n) for n = 0..126</a>
%H A286521 Robert Price, <a href="/A286521/a286521.tmp.txt">Diagrams of first 20 stages</a>
%H A286521 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A286521 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A286521 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A286521 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A286521 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A286521 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A286521 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A286521 Conjectures from _Colin Barker_, Jul 22 2017: (Start)
%F A286521 G.f.: (1 - 2*x^2 + 6*x^3 - 4*x^4) / ((1 - x)*(1 - 2*x)).
%F A286521 a(n) = 2^(1+n) - 1 for n>2.
%F A286521 a(n) = 3*a(n-1) - 2*a(n-2) for n>4.
%F A286521 (End)
%t A286521 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A286521 code = 659; stages = 128;
%t A286521 rule = IntegerDigits[code, 2, 10];
%t A286521 g = 2 * stages + 1; (* Maximum size of grid *)
%t A286521 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A286521 ca = a;
%t A286521 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A286521 PrependTo[ca, a];
%t A286521 (* Trim full grid to reflect growth by one cell at each stage *)
%t A286521 k = (Length[ca[[1]]] + 1)/2;
%t A286521 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A286521 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A286521 Cf. A286518, A286519, A286520.
%K A286521 nonn,easy
%O A286521 0,2
%A A286521 _Robert Price_, Jul 22 2017