This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286525 #25 Apr 29 2019 05:21:51 %S A286525 1,1,3,978,7885536,1030690752000,2681594035175055000, %T A286525 111102459342780333711432912,82765346051371433995689422809152600, %U A286525 984929152509556378339959477248973638627262816,201525938526971993585665495909682003042353826154218776128 %N A286525 Number of inequivalent n X n matrices over GF(4) under action of dihedral group of the square D_4, with a fourth of 1's, 2's, 3's and 4's (ordered occurrences rounded up/down if n^2 != 0 mod 4). %H A286525 María Merino, <a href="/A286525/b286525.txt">Table of n, a(n) for n = 0..39</a> %H A286525 M. Merino and I. Unanue, <a href="https://doi.org/10.1387/ekaia.17851">Counting squared grid patterns with Pólya Theory</a>, EKAIA, 34 (2018), 289-316 (in Basque). %F A286525 G.f.: g(x1,x2,x3,x4) = 1/8*(y1^(n^2) + 2*y1^n*y2^((n^2 - n)/2) + 3*y2^(n^2/2) + 2*y4^(n^2/4)) if n even and 1/8*(y1^(n^2) + 4*y1^n*y2^((n^2 - n)/2) + y1*y2^((n^2 - 1)/2) + 2*y1*y4^((n^2 - 1)/4)) if n odd, where coefficient correspond to y1 = x1 + x2 + x3 + x4, y2 = x1^2 + x2^2 + x3^2 + x4^2, y4 = x1^4 + x2^4 + x3^4 + x4^2 and occurrences of numbers are ceiling(n^2/4) for 1's and floor(n^2/4) for 2's, 3's and 4's. %e A286525 For n=2 the a(2)=3 solutions are the colorings of 2 X 2 matrices in 4 colors inequivalent under the action of D_4 with exactly 1 occurrence of each color (coefficient of x1^1 x2^1 x3^1 x4^1). %Y A286525 Cf. A054751, A082963, A286447. %K A286525 nonn %O A286525 0,3 %A A286525 _María Merino_, Imanol Unanue, May 11 2017