cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286529 a(n) = d(n+d(n)), where d(n) is the number of divisors of n (A000005).

This page as a plain text file.
%I A286529 #15 Jul 08 2020 05:10:26
%S A286529 2,3,2,2,2,4,3,6,6,4,2,6,4,6,2,4,2,8,4,4,3,4,3,6,6,8,2,4,2,4,4,4,2,4,
%T A286529 4,6,4,8,2,10,2,6,6,6,4,6,3,4,6,8,4,4,4,4,2,7,2,4,2,12,6,8,4,2,4,4,4,
%U A286529 4,2,8,2,12,6,8,5,4,5,4,5,12,4,4,4,12,2,12,4,12,4,8,4,6,2,6,6,12,6,8,8,2,2,8,8,10,2,8,2,16,4,4,4,4,4,4,4,4,4
%N A286529 a(n) = d(n+d(n)), where d(n) is the number of divisors of n (A000005).
%H A286529 Antti Karttunen, <a href="/A286529/b286529.txt">Table of n, a(n) for n = 1..10000</a>
%H A286529 Aleksandar Ivić, <a href="https://www.jstor.org/stable/43666434">An asymptotic formula involving the enumerating function of finite Abelian groups</a>, Publikacije Elektrotehničkog fakulteta, Serija Matematika 3 (1992), pp. 61-66.
%H A286529 Imre Kátai, <a href="http://mathematica-pannonica.ttk.pte.hu/index_elemei/mp18-1/MP18-1(2007)pp11-18.pdf">On a problem of A. Ivic</a>, Mathematica Pannonica, Vol. 18, No. 1 (2007), pp. 11-18.
%F A286529 a(n) = A000005(A062249(n)) = A000005(n+A000005(n)).
%F A286529 Sum_{k=1..n} a(k) ~ D*n*log(n) + O(n*log(n)/log(log(n))), where D > 0 is a constant (conjectured with an error O(n) by Ivić, 1992; proven by Kátai, 2007). - _Amiram Eldar_, Jul 08 2020
%t A286529 Table[DivisorSigma[0, n + DivisorSigma[0, n]], {n, 117}] (* _Michael De Vlieger_, May 21 2017 *)
%o A286529 (PARI) A286529(n) = numdiv(n+numdiv(n));
%o A286529 (Scheme) (define (A286529 n) (A000005 (+ n (A000005 n))))
%o A286529 (Python)
%o A286529 from sympy import divisor_count as d
%o A286529 def a(n): return d(n + d(n)) # _Indranil Ghosh_, May 21 2017
%Y A286529 Cf. A000005, A062249, A175304, A286479, A286530.
%K A286529 nonn
%O A286529 1,1
%A A286529 _Antti Karttunen_, May 21 2017