This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286563 #31 Apr 07 2025 10:42:19 %S A286563 1,1,1,1,0,1,1,2,0,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,1,1,3,0,1,0,0, %T A286563 0,1,1,0,2,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,2, %U A286563 1,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1 %N A286563 Triangular table T(n,k) read by rows: T(n,1) = 1, and for 1 < k <= n, T(n,k) = the highest exponent e such that k^e divides n. %C A286563 T(n,k) > 0 for k in row n of A027750. - _Michael De Vlieger_, May 20 2017 %C A286563 Compare rows to those of triangle A279907, smallest exponent e of n divisible by k. The values of k > -1 in row n of A279907 pertain to k in row n of A162306 rather than k in row n of A027750. - _Michael De Vlieger_, May 21 2017 %H A286563 Antti Karttunen, <a href="/A286563/b286563.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of the triangle</a> %F A286563 T(n,k) = A286561(n,k) listed row by row for n >= 1, k = 1 .. n. %e A286563 The first fifteen rows of this triangular table: %e A286563 1, %e A286563 1, 1, %e A286563 1, 0, 1, %e A286563 1, 2, 0, 1, %e A286563 1, 0, 0, 0, 1, %e A286563 1, 1, 1, 0, 0, 1, %e A286563 1, 0, 0, 0, 0, 0, 1, %e A286563 1, 3, 0, 1, 0, 0, 0, 1, %e A286563 1, 0, 2, 0, 0, 0, 0, 0, 1, %e A286563 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, %e A286563 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, %e A286563 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, %e A286563 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, %e A286563 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, %e A286563 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 %p A286563 T := (n, k) -> ifelse(k = 1, 1, padic:-ordp(n, k)): %p A286563 for n from 1 to 12 do seq(T(n, k), k = 1..n) od; # _Peter Luschny_, Apr 07 2025 %t A286563 Table[If[k == 1, 1, IntegerExponent[n, k]], {n, 15}, {k, n}] // Flatten (* _Michael De Vlieger_, May 20 2017 *) %o A286563 (Scheme) (define (A286563 n) (A286561bi (A002024 n) (A002260 n))) ;; For A286561bi see A286561. %o A286563 (Python) %o A286563 def T(n, k): %o A286563 i=1 %o A286563 if k==1: return 1 %o A286563 while n%(k**i)==0: %o A286563 i+=1 %o A286563 return i-1 %o A286563 for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # _Indranil Ghosh_, May 20 2017 %Y A286563 Lower triangular region of A286561. %Y A286563 Cf. A286564 (same triangle reversed). %Y A286563 Cf. A169594 (row sums). %Y A286563 Cf. also arrays A051731, A286158, A027750, A279907, A280269. %K A286563 nonn,tabl %O A286563 1,8 %A A286563 _Antti Karttunen_, May 20 2017