This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286568 #10 May 26 2017 16:38:06 %S A286568 1,1,8,3,14,8,42,10,21,14,76,19,90,42,63,36,152,21,208,44,148,76,322, %T A286568 53,210,90,228,117,434,63,625,136,296,152,402,78,702,208,375,152,860, %U A286568 148,988,251,324,322,1271,169,903,210,627,324,1430,228,943,375,816,434,1828,187,1890,625,777,528,1273,296,2344,560,1220,402,2698,300,2700,702,901 %N A286568 Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function. %H A286568 Antti Karttunen, <a href="/A286568/b286568.txt">Table of n, a(n) for n = 1..10000</a> %F A286568 a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)). %o A286568 (PARI) %o A286568 A000010(n) = eulerphi(n); %o A286568 A001511(n) = (1+valuation(n,2)); %o A286568 A286357(n) = A001511(sigma(n)); %o A286568 A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)); %o A286568 (Scheme) (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2))) %o A286568 (Python) %o A286568 from sympy import divisor_sigma as D, totient %o A286568 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 %o A286568 def a001511(n): return bin(n)[2:][::-1].index("1") + 1 %o A286568 def a286357(n): return a001511(D(n)) %o A286568 def a(n): return T(totient(n), a286357(n)) # _Indranil Ghosh_, May 26 2017 %Y A286568 Cf. A000010, A000027, A286154, A286160, A286357, A286451, A286572. %K A286568 nonn %O A286568 1,3 %A A286568 _Antti Karttunen_, May 26 2017