This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286585 #15 Mar 23 2021 05:38:29 %S A286585 1,2,1,3,2,4,2,4,3,3,3,5,1,5,2,5,2,4,2,4,2,4,3,6,5,6,3,6,4,7,3,6,3,3, %T A286585 3,5,3,5,5,5,4,3,4,5,4,6,1,7,5,6,4,7,2,8,4,7,4,5,3,8,4,4,4,7,4,6,2,4, %U A286585 5,6,3,6,4,6,5,6,4,6,4,6,7,5,3,4,5,7,6,6,5,5,4,7,3,8,1,8,5,6,3,7,6,7,2,8 %N A286585 a(n) = A053735(A048673(n)). %H A286585 Antti Karttunen, <a href="/A286585/b286585.txt">Table of n, a(n) for n = 1..8192</a> %F A286585 a(n) = A053735(A048673(n)). %F A286585 For all n >= 0, a(A000079(n)) = n+1. %o A286585 (Scheme) (define (A286585 n) (A053735 (A048673 n))) %o A286585 (Python) %o A286585 from sympy.ntheory.factor_ import digits %o A286585 from sympy import factorint, nextprime %o A286585 from operator import mul %o A286585 def a053735(n): return sum(digits(n, 3)[1:]) %o A286585 def a048673(n): %o A286585 f = factorint(n) %o A286585 return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))//2 %o A286585 def a(n): return a053735(a048673(n)) %o A286585 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 12 2017 %Y A286585 Cf. A000079, A048673, A053735, A286582, A286583, A286584, A286586. %K A286585 nonn %O A286585 1,2 %A A286585 _Antti Karttunen_, May 31 2017