This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286613 #8 May 30 2017 18:16:37 %S A286613 1,2,2,2,4,8,2,6,6,2,12,2,4,6,12,2,2,2,12,32,6,2,24,12,2,6,6,2,12,12, %T A286613 2,6,4,12,6,12,6,2,30,6,72,12,2,6,120,2,30,6,6,30,6,6,24,48,2,12,60,6, %U A286613 210,2,2,30,6,6,6,6,2,2,60,12,2,2,6,2,60,24,6,6,48,12,6,6,6,2,6,12,12 %N A286613 a(n) = A046523(A244154(n)). %H A286613 Antti Karttunen, <a href="/A286613/b286613.txt">Table of n, a(n) for n = 0..16383</a> %F A286613 a(n) = A046523(A244154(n)). %F A286613 a(n) = A278224(A005940(1+n)) = A046523(A048673(A005940(1+n))). %F A286613 a(n) = A285713(A054429(n)). %o A286613 (PARI) %o A286613 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from _Michel Marcus_ %o A286613 A048673(n) = (A003961(n)+1)/2; %o A286613 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of _M. F. Hasler_ %o A286613 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011 %o A286613 A286613(n) = A046523(A048673(A005940(1+n))); %o A286613 (Scheme) (define (A286613 n) (A046523 (A244154 n))) %Y A286613 Cf. A005940, A046523, A048673, A054429, A244154, A278224, A285713, A286614. %K A286613 nonn %O A286613 0,2 %A A286613 _Antti Karttunen_, May 30 2017