This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A286658 #19 Jun 16 2022 14:27:15 %S A286658 13,29,53,149,173,269,293,317,389,509,557,653,769,773,797,1109,1229, %T A286658 1493,1637,1733,1949,1997,2309,2477,2693,2837,2909,2957,3329,3413, %U A286658 3533,3677,3989,4133,4157,4253,4349,4373,4493,4517,5189,5309,5693,5717,5813,6173 %N A286658 Primes of the form p*b^b + 1, where p is a prime and b>1. %H A286658 Robert Israel, <a href="/A286658/b286658.txt">Table of n, a(n) for n = 1..10000</a> %e A286658 a(1) = 3*(2^2)+1 = 13. %e A286658 a(2) = 7*(2^2)+1 = 29. %e A286658 a(3) = 13*(2^2)+1 = 53. %p A286658 N:= 10000: # for all terms <= N %p A286658 Res:= NULL: %p A286658 P:= select(isprime, [2,seq(i,i=3..N/4,2)]): %p A286658 for b from 2 do %p A286658 q:= b^b; if q > N/2 then break fi; %p A286658 for i from 1 to nops(P) do %p A286658 x:= P[i]*q+1; %p A286658 if x > N then break fi; %p A286658 if isprime(x) then Res:= Res, x fi; %p A286658 od od: %p A286658 sort(convert({Res},list)); # _Robert Israel_, Nov 12 2019 %t A286658 nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++];Select[Union@Flatten@Table[Prime[pi] b^b+1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&] %o A286658 (PARI) list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b+1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B+1>lim, break); forprime(q=3,(lim-1)\B, my(p=q*B+1); if(isprime(p), listput(v,p)))); Set(v) \\ _Charles R Greathouse IV_, Jun 16 2022 %Y A286658 Cf. A175768, A285015. %K A286658 nonn,easy %O A286658 1,1 %A A286658 _Vincenzo Librandi_, May 12 2017