A286710 Numbers n whose Zeckendorf representation is of the form ww, for w a nonempty block of digits.
7, 16, 39, 54, 97, 120, 134, 246, 282, 304, 340, 376, 631, 688, 723, 780, 837, 872, 929, 964, 1631, 1722, 1778, 1869, 1960, 2016, 2107, 2163, 2254, 2345, 2401, 2492, 2583, 4236, 4382, 4472, 4618, 4764, 4854, 5000, 5090, 5236, 5382, 5472, 5618, 5764, 5854, 6000, 6090, 6236, 6382, 6472, 6618, 6708, 11035, 11270, 11415
Offset: 1
Examples
The representation of 7 is 1010, which is of the form ww with w = 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
F:= [seq(combinat:-fibonacci(i),i=2..21)]: ext:= proc(L) if L[2] = 0 then [0,op(L)], [0,1,op(L[2..-1])] else [0,op(L)] fi end proc: build:= proc(L) local i,k; k:= nops(L); add((F[i]+F[k+i])*L[i],i=1..k) end proc: R[2]:= [[0,1]]: for i from 3 to 10 do R[i]:= map(ext,R[i-1]) od: map(build, [seq(op(R[i]),i=2..10)]); # Robert Israel, Feb 19 2019
-
Mathematica
Reap[Do[ w = IntegerDigits[k, 2]; p = 1 + Flatten@ Position[ Reverse@ Join[w, w], 1]; If[ Min@ Differences@ p > 1, Sow@ Total@ Fibonacci@ p], {k, 2^10 - 1}]][[2, 1]] (* Giovanni Resta, May 13 2017 *)
Comments