cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A286717 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.

This page as a plain text file.
%I A286717 #19 Sep 08 2022 08:46:19
%S A286717 0,1,2,3,2,3,4,5,6,5,6,7,8,9,8,9,10,11,12,11,12,13,14,15,14,15,16,17,
%T A286717 18,17,18,19,20,21,20,21,22,23,24,23,24,25,26,27,26,27,28,29,30,29,30,
%U A286717 31,32,33,32,33,34,35,36,35,36,37,38,39,38,39,40,41,42
%N A286717 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.
%C A286717 See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by _Michel Lagneau_ (see A008611) on Fibonacci polynomials.
%H A286717 G. C. Greubel, <a href="/A286717/b286717.txt">Table of n, a(n) for n = 0..5000</a>
%H A286717 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A286717 a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A286716(n). See the g.f. for {b(n)}_{n>=0} there.
%F A286717 From _Colin Barker_, May 18 2017: (Start)
%F A286717 G.f.: x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
%F A286717 a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
%F A286717 (End)
%e A286717 a(4) = 2: S(4, x) = 1+x^4-3*x^2, and only two of the four zeros -phi, -1/phi, +1/phi, phi are in the open interval (-phi, +phi), the other two are at the borders.
%t A286717 CoefficientList[Series[x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)), {x, 0, 50}], x] (* _G. C. Greubel_, Mar 08 2018 *)
%t A286717 LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,3},80] (* _Harvey P. Dale_, Aug 20 2020 *)
%o A286717 (PARI) concat(0, Vec(x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ _Colin Barker_, May 18 2017
%o A286717 (Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)))); // _G. C. Greubel_, Mar 08 2018
%Y A286717 Cf. A008611(n-1) (1), A285869 (sqrt(2)), A285872 (sqrt(3)).
%K A286717 nonn,easy
%O A286717 0,3
%A A286717 _Wolfdieter Lang_, May 13 2017